题目描述

高一一班的座位表是个n*m的矩阵,经过一个学期的相处,每个同学和前后左右相邻的同学互相成为了好朋友。这学期要分文理科了,每个同学对于选择文科与理科有着自己的喜悦值,而一对好朋友如果能同时选文科或者理科,那么他们又将收获一些喜悦值。作为计算机竞赛教练的scp大老板,想知道如何分配可以使得全班的喜悦值总和最大。

输入

第一行两个正整数n,m。接下来是六个矩阵第一个矩阵为n行m列 此矩阵的第i行第j列的数字表示座位在第i行第j列的同学选择文科获得的喜悦值。第二个矩阵为n行m列 此矩阵的第i行第j列的数字表示座位在第i行第j列的同学选择理科获得的喜悦值。第三个矩阵为n-1行m列 此矩阵的第i行第j列的数字表示座位在第i行第j列的同学与第i+1行第j列的同学同时选择文科获得的额外喜悦值。第四个矩阵为n-1行m列 此矩阵的第i行第j列的数字表示座位在第i行第j列的同学与第i+1行第j列的同学同时选择理科获得的额外喜悦值。第五个矩阵为n行m-1列 此矩阵的第i行第j列的数字表示座位在第i行第j列的同学与第i行第j+1列的同学同时选择文科获得的额外喜悦值。第六个矩阵为n行m-1列 此矩阵的第i行第j列的数字表示座位在第i行第j列的同学与第i行第j+1列的同学同时选择理科获得的额外喜悦值。

输出

输出一个整数,表示喜悦值总和的最大值

样例输入

1 2 1 1 100 110 1 1000

样例输出

1210


题解

网络流最小割

本体貌似有两种建图方法。

第一种和 bzoj3438 差不多,比较简单且容易理解,所以本蒟蒻采用了这种方法。

具体建图:

S->同学,容量为文科收益;同学->T,容量为理科收益;

S->相邻的两个同学文科组合(在同学的基础上加出来的新点),容量为都选文科的收益;相邻的两个同学文科组合->相邻的两个同学,容量为inf;

相邻的两个同学->相邻的两个同学理科组合,容量为inf;相邻的两个理科组合->T,容量为都选理科的收益。

最后求出最小割,答案为所有收益的总和-最小割。

第二种参见 http://www.cnblogs.com/chenyushuo/p/5144957.html ,有点难理解,实测速度比我的快大概5倍左右。

#include <cstdio>
#include <cstring>
#include <queue>
#define N 60010
#define M 300010
#define inf 0x7fffffff
#define pos(i , j) (i - 1) * m + j
using namespace std;
queue<int> q;
int head[N] , to[M] , val[M] , next[M] , cnt = 1 , s , t , dis[N];
void add(int x , int y , int z)
{
to[++cnt] = y , val[cnt] = z , next[cnt] = head[x] , head[x] = cnt;
to[++cnt] = x , val[cnt] = 0 , next[cnt] = head[y] , head[y] = cnt;
}
bool bfs()
{
int x , i;
memset(dis , 0 , sizeof(dis));
while(!q.empty()) q.pop();
dis[s] = 1 , q.push(s);
while(!q.empty())
{
x = q.front() , q.pop();
for(i = head[x] ; i ; i = next[i])
{
if(val[i] && !dis[to[i]])
{
dis[to[i]] = dis[x] + 1;
if(to[i] == t) return 1;
q.push(to[i]);
}
}
}
return 0;
}
int dinic(int x , int low)
{
if(x == t) return low;
int temp = low , i , k;
for(i = head[x] ; i ; i = next[i])
{
if(val[i] && dis[to[i]] == dis[x] + 1)
{
k = dinic(to[i] , min(temp , val[i]));
if(!k) dis[to[i]] = 0;
val[i] -= k , val[i ^ 1] += k;
if(!(temp -= k)) break;
}
}
return low - temp;
}
int main()
{
int n , m , i , j , x , tot , ans = 0;
scanf("%d%d" , &n , &m) , s = 0 , t = tot = n * m + 1;
for(i = 1 ; i <= n ; i ++ ) for(j = 1 ; j <= m ; j ++ ) scanf("%d" , &x) , add(s , pos(i , j) , x) , ans += x;
for(i = 1 ; i <= n ; i ++ ) for(j = 1 ; j <= m ; j ++ ) scanf("%d" , &x) , add(pos(i , j) , t , x) , ans += x;
for(i = 1 ; i < n ; i ++ ) for(j = 1 ; j <= m ; j ++ ) scanf("%d" , &x) , add(s , ++tot , x) , add(tot , pos(i , j) , inf) , add(tot , pos(i + 1 , j) , inf) , ans += x;
for(i = 1 ; i < n ; i ++ ) for(j = 1 ; j <= m ; j ++ ) scanf("%d" , &x) , add(pos(i , j) , ++tot , inf) , add(pos(i + 1 , j) , tot , inf) , add(tot , t , x) , ans += x;
for(i = 1 ; i <= n ; i ++ ) for(j = 1 ; j < m ; j ++ ) scanf("%d" , &x) , add(s , ++tot , x) , add(tot , pos(i , j) , inf) , add(tot , pos(i , j + 1) , inf) , ans += x;
for(i = 1 ; i <= n ; i ++ ) for(j = 1 ; j < m ; j ++ ) scanf("%d" , &x) , add(pos(i , j) , ++tot , inf) , add(pos(i , j + 1) , tot , inf) , add(tot , t , x) , ans += x;
while(bfs()) ans -= dinic(s , inf);
printf("%d\n" , ans);
return 0;
}

【bzoj2127】happiness 网络流最小割的更多相关文章

  1. 【BZOJ2127】happiness(最小割)

    [BZOJ2127]happiness(最小割) 题面 Description 高一一班的座位表是个n*m的矩阵,经过一个学期的相处,每个同学和前后左右相邻的同学互相成为了好朋友.这学期要分文理科了, ...

  2. 【题解】 bzoj3894: 文理分科 (网络流/最小割)

    bzoj3894,懒得复制题面,戳我戳我 Solution: 首先这是一个网络流,应该还比较好想,主要就是考虑建图了. 我们来分析下题面,因为一个人要么选文科要么选理科,相当于两条流里面割掉一条(怎么 ...

  3. 【bzoj3774】最优选择 网络流最小割

    题目描述 小N手上有一个N*M的方格图,控制某一个点要付出Aij的代价,然后某个点如果被控制了,或者他周围的所有点(上下左右)都被控制了,那么他就算是被选择了的.一个点如果被选择了,那么可以得到Bij ...

  4. 【bzoj1143】[CTSC2008]祭祀river Floyd+网络流最小割

    题目描述 在遥远的东方,有一个神秘的民族,自称Y族.他们世代居住在水面上,奉龙王为神.每逢重大庆典, Y族都会在水面上举办盛大的祭祀活动.我们可以把Y族居住地水系看成一个由岔口和河道组成的网络.每条河 ...

  5. 【bzoj1797】[Ahoi2009]Mincut 最小割 网络流最小割+Tarjan

    题目描述 给定一张图,对于每一条边询问:(1)是否存在割断该边的s-t最小割 (2)是否所有s-t最小割都割断该边 输入 第一行有4个正整数,依次为N,M,s和t.第2行到第(M+1)行每行3个正 整 ...

  6. 【bzoj1976】[BeiJing2010组队]能量魔方 Cube 网络流最小割

    题目描述 一个n*n*n的立方体,每个位置为0或1.有些位置已经确定,还有一些需要待填入.问最后可以得到的 相邻且填入的数不同的点对 的数目最大. 输入 第一行包含一个数N,表示魔方的大小. 接下来 ...

  7. 【bzoj4177】Mike的农场 网络流最小割

    题目描述 Mike有一个农场,这个农场n个牲畜围栏,现在他想在每个牲畜围栏中养一只动物,每只动物可以是牛或羊,并且每个牲畜围栏中的饲养条件都不同,其中第i个牲畜围栏中的动物长大后,每只牛可以卖a[i] ...

  8. 【bzoj3438】小M的作物 网络流最小割

    原文地址:http://www.cnblogs.com/GXZlegend/p/6801522.html 题目描述 小M在MC里开辟了两块巨大的耕地A和B(你可以认为容量是无穷),现在,小P有n中作物 ...

  9. 【bzoj3144】[Hnoi2013]切糕 网络流最小割

    题目描述 输入 第一行是三个正整数P,Q,R,表示切糕的长P. 宽Q.高R.第二行有一个非负整数D,表示光滑性要求.接下来是R个P行Q列的矩阵,第z个 矩阵的第x行第y列是v(x,y,z) (1≤x≤ ...

随机推荐

  1. Codeforces Round #323 (Div. 2) D 582B Once Again...(快速幂)

    A[i][j]表示在循环节下标i开头j结尾的最长不减子序列,这个序列的长度为p,另外一个长度为q的序列对应的矩阵为B[i][j], 将两序列合并,新的序列对应矩阵C[i][j] = max(A[i][ ...

  2. 待解决问题:c++栈对象的析构、虚拟内存与内存管理的关系、内存管理的解决方案。

    待解决问题:c++栈对象的析构.虚拟内存与内存管理的关系.内存管理的解决方案.

  3. 深入理解计算机系统_3e 第十一章家庭作业 CS:APP3e chapter 11 homework

    注:tiny.c csapp.c csapp.h等示例代码均可在Code Examples获取 11.6 A. 书上写的示例代码已经完成了大部分工作:doit函数中的printf("%s&q ...

  4. 【转】mongoDB 学习笔记纯干货(mongoose、增删改查、聚合、索引、连接、备份与恢复、监控等等)

    mongoDB 学习笔记纯干货(mongoose.增删改查.聚合.索引.连接.备份与恢复.监控等等) http://www.cnblogs.com/bxm0927/p/7159556.html

  5. edge不能上网-代码 INET_E_RESOURCE_NOT_FOUND

    这个问题 ,网上有很多解决方法,我基本都测试了一遍,可是我都没有用 情况:首先,我开始的时候是可以用的,然后在公司,开了代理,就不能使用了,这是我之后多次尝试发现的,所以你也遇到和我一样的情况不必惊慌 ...

  6. rem适配方案

    页面布局单位计算 一般有两大类:绝对长度单位和相对长度单位 绝对长度单位: px 像素:是显示屏上显示的每一个小点,为显示的最小单位 in 英寸,1in = 96px cm 厘米,1cm = 37.8 ...

  7. java POI往word文档中指定位置插入表格

    1.Service  demo import java.awt.Color; import java.awt.Font; import java.awt.Graphics; import java.a ...

  8. PyCharm 2018.1 软件汉化

    下载汉化包 链接: https://pan.baidu.com/s/1buLFINImW_3cNzP8HsB4cA 密码: fqpu 安装汉化包 找到pycharm安装目录 直接把刚刚下载的汉化包复制 ...

  9. Shell脚本使用汇总整理——达梦数据库备份脚本

    Shell脚本使用汇总整理——达梦数据库备份脚本 Shell脚本使用的基本知识点汇总详情见连接: https://www.cnblogs.com/lsy-blogs/p/9223477.html 脚本 ...

  10. jupyter notebook(二)——修改jupyter打开默认的工作目录

    1.简述 jupyter notebook,启动后,浏览器发现工作目录并不是自己真正的代码的工作路径.所以需要设置一下.这样方便自己快捷使用. 2.设置修改jupyter notebook打开后默认工 ...