题目描述

高一一班的座位表是个n*m的矩阵,经过一个学期的相处,每个同学和前后左右相邻的同学互相成为了好朋友。这学期要分文理科了,每个同学对于选择文科与理科有着自己的喜悦值,而一对好朋友如果能同时选文科或者理科,那么他们又将收获一些喜悦值。作为计算机竞赛教练的scp大老板,想知道如何分配可以使得全班的喜悦值总和最大。

输入

第一行两个正整数n,m。接下来是六个矩阵第一个矩阵为n行m列 此矩阵的第i行第j列的数字表示座位在第i行第j列的同学选择文科获得的喜悦值。第二个矩阵为n行m列 此矩阵的第i行第j列的数字表示座位在第i行第j列的同学选择理科获得的喜悦值。第三个矩阵为n-1行m列 此矩阵的第i行第j列的数字表示座位在第i行第j列的同学与第i+1行第j列的同学同时选择文科获得的额外喜悦值。第四个矩阵为n-1行m列 此矩阵的第i行第j列的数字表示座位在第i行第j列的同学与第i+1行第j列的同学同时选择理科获得的额外喜悦值。第五个矩阵为n行m-1列 此矩阵的第i行第j列的数字表示座位在第i行第j列的同学与第i行第j+1列的同学同时选择文科获得的额外喜悦值。第六个矩阵为n行m-1列 此矩阵的第i行第j列的数字表示座位在第i行第j列的同学与第i行第j+1列的同学同时选择理科获得的额外喜悦值。

输出

输出一个整数,表示喜悦值总和的最大值

样例输入

1 2 1 1 100 110 1 1000

样例输出

1210


题解

网络流最小割

本体貌似有两种建图方法。

第一种和 bzoj3438 差不多,比较简单且容易理解,所以本蒟蒻采用了这种方法。

具体建图:

S->同学,容量为文科收益;同学->T,容量为理科收益;

S->相邻的两个同学文科组合(在同学的基础上加出来的新点),容量为都选文科的收益;相邻的两个同学文科组合->相邻的两个同学,容量为inf;

相邻的两个同学->相邻的两个同学理科组合,容量为inf;相邻的两个理科组合->T,容量为都选理科的收益。

最后求出最小割,答案为所有收益的总和-最小割。

第二种参见 http://www.cnblogs.com/chenyushuo/p/5144957.html ,有点难理解,实测速度比我的快大概5倍左右。

#include <cstdio>
#include <cstring>
#include <queue>
#define N 60010
#define M 300010
#define inf 0x7fffffff
#define pos(i , j) (i - 1) * m + j
using namespace std;
queue<int> q;
int head[N] , to[M] , val[M] , next[M] , cnt = 1 , s , t , dis[N];
void add(int x , int y , int z)
{
to[++cnt] = y , val[cnt] = z , next[cnt] = head[x] , head[x] = cnt;
to[++cnt] = x , val[cnt] = 0 , next[cnt] = head[y] , head[y] = cnt;
}
bool bfs()
{
int x , i;
memset(dis , 0 , sizeof(dis));
while(!q.empty()) q.pop();
dis[s] = 1 , q.push(s);
while(!q.empty())
{
x = q.front() , q.pop();
for(i = head[x] ; i ; i = next[i])
{
if(val[i] && !dis[to[i]])
{
dis[to[i]] = dis[x] + 1;
if(to[i] == t) return 1;
q.push(to[i]);
}
}
}
return 0;
}
int dinic(int x , int low)
{
if(x == t) return low;
int temp = low , i , k;
for(i = head[x] ; i ; i = next[i])
{
if(val[i] && dis[to[i]] == dis[x] + 1)
{
k = dinic(to[i] , min(temp , val[i]));
if(!k) dis[to[i]] = 0;
val[i] -= k , val[i ^ 1] += k;
if(!(temp -= k)) break;
}
}
return low - temp;
}
int main()
{
int n , m , i , j , x , tot , ans = 0;
scanf("%d%d" , &n , &m) , s = 0 , t = tot = n * m + 1;
for(i = 1 ; i <= n ; i ++ ) for(j = 1 ; j <= m ; j ++ ) scanf("%d" , &x) , add(s , pos(i , j) , x) , ans += x;
for(i = 1 ; i <= n ; i ++ ) for(j = 1 ; j <= m ; j ++ ) scanf("%d" , &x) , add(pos(i , j) , t , x) , ans += x;
for(i = 1 ; i < n ; i ++ ) for(j = 1 ; j <= m ; j ++ ) scanf("%d" , &x) , add(s , ++tot , x) , add(tot , pos(i , j) , inf) , add(tot , pos(i + 1 , j) , inf) , ans += x;
for(i = 1 ; i < n ; i ++ ) for(j = 1 ; j <= m ; j ++ ) scanf("%d" , &x) , add(pos(i , j) , ++tot , inf) , add(pos(i + 1 , j) , tot , inf) , add(tot , t , x) , ans += x;
for(i = 1 ; i <= n ; i ++ ) for(j = 1 ; j < m ; j ++ ) scanf("%d" , &x) , add(s , ++tot , x) , add(tot , pos(i , j) , inf) , add(tot , pos(i , j + 1) , inf) , ans += x;
for(i = 1 ; i <= n ; i ++ ) for(j = 1 ; j < m ; j ++ ) scanf("%d" , &x) , add(pos(i , j) , ++tot , inf) , add(pos(i , j + 1) , tot , inf) , add(tot , t , x) , ans += x;
while(bfs()) ans -= dinic(s , inf);
printf("%d\n" , ans);
return 0;
}

【bzoj2127】happiness 网络流最小割的更多相关文章

  1. 【BZOJ2127】happiness(最小割)

    [BZOJ2127]happiness(最小割) 题面 Description 高一一班的座位表是个n*m的矩阵,经过一个学期的相处,每个同学和前后左右相邻的同学互相成为了好朋友.这学期要分文理科了, ...

  2. 【题解】 bzoj3894: 文理分科 (网络流/最小割)

    bzoj3894,懒得复制题面,戳我戳我 Solution: 首先这是一个网络流,应该还比较好想,主要就是考虑建图了. 我们来分析下题面,因为一个人要么选文科要么选理科,相当于两条流里面割掉一条(怎么 ...

  3. 【bzoj3774】最优选择 网络流最小割

    题目描述 小N手上有一个N*M的方格图,控制某一个点要付出Aij的代价,然后某个点如果被控制了,或者他周围的所有点(上下左右)都被控制了,那么他就算是被选择了的.一个点如果被选择了,那么可以得到Bij ...

  4. 【bzoj1143】[CTSC2008]祭祀river Floyd+网络流最小割

    题目描述 在遥远的东方,有一个神秘的民族,自称Y族.他们世代居住在水面上,奉龙王为神.每逢重大庆典, Y族都会在水面上举办盛大的祭祀活动.我们可以把Y族居住地水系看成一个由岔口和河道组成的网络.每条河 ...

  5. 【bzoj1797】[Ahoi2009]Mincut 最小割 网络流最小割+Tarjan

    题目描述 给定一张图,对于每一条边询问:(1)是否存在割断该边的s-t最小割 (2)是否所有s-t最小割都割断该边 输入 第一行有4个正整数,依次为N,M,s和t.第2行到第(M+1)行每行3个正 整 ...

  6. 【bzoj1976】[BeiJing2010组队]能量魔方 Cube 网络流最小割

    题目描述 一个n*n*n的立方体,每个位置为0或1.有些位置已经确定,还有一些需要待填入.问最后可以得到的 相邻且填入的数不同的点对 的数目最大. 输入 第一行包含一个数N,表示魔方的大小. 接下来 ...

  7. 【bzoj4177】Mike的农场 网络流最小割

    题目描述 Mike有一个农场,这个农场n个牲畜围栏,现在他想在每个牲畜围栏中养一只动物,每只动物可以是牛或羊,并且每个牲畜围栏中的饲养条件都不同,其中第i个牲畜围栏中的动物长大后,每只牛可以卖a[i] ...

  8. 【bzoj3438】小M的作物 网络流最小割

    原文地址:http://www.cnblogs.com/GXZlegend/p/6801522.html 题目描述 小M在MC里开辟了两块巨大的耕地A和B(你可以认为容量是无穷),现在,小P有n中作物 ...

  9. 【bzoj3144】[Hnoi2013]切糕 网络流最小割

    题目描述 输入 第一行是三个正整数P,Q,R,表示切糕的长P. 宽Q.高R.第二行有一个非负整数D,表示光滑性要求.接下来是R个P行Q列的矩阵,第z个 矩阵的第x行第y列是v(x,y,z) (1≤x≤ ...

随机推荐

  1. noip模拟赛#39

    昨晚打开的题想了一会发现都不会后决定慢慢想.然后早上开校会的时候莫名其妙的都想出来了... T1:m=100,ai=50000,i<=5.1到m的数每个数只能用一次,判断是否能够有这些数的某些数 ...

  2. Hystrix + Hystrix Dashboard搭建(Spring Cloud 2.X)

    本机IP为  192.168.1.102 一.搭建Hystrix Dashboard 1.   新建 Maven 项目  hystrix-dashboard 2. pom.xml <projec ...

  3. 51+Nokia5110

    #include<reg52.h> #include <intrins.h> #define uchar unsigned char #define uint unsigned ...

  4. BundleConfig的作用

    在ASP.NET MVC4中(在WebForm中应该也有),有一个叫做Bundle的东西,它用来将js和css进行压缩(多个文件可以打包成一个文件),并且可以区分调试和非调试,在调试时不进行压缩,以原 ...

  5. JavaScript 交换两个变量的值

    方法一 let a = "a", b = "b"; console.log(a, b); let t = a; a = b; b = t; console.lo ...

  6. 在React中使用Redux数据流

    问题:数据流是什么呢?为什么要用数据流? 答案:1.数据流是我们的行为与相应的抽象 2.使用数据流帮助我们明确了行为的对应的响应 问题: React与数据流的关系 1.React是纯 V 层的前端框架 ...

  7. 微信小程序的开发——01小程序的执行流程是怎样的?

    作者:叶小钗 转载至:https://www.cnblogs.com/yexiaochai/p/9346043.html 我们这边最近一直在做基础服务,这一切都是为了完善技术体系,这里对于前端来说便是 ...

  8. 解决: Intelij IDEA 创建WEB项目时没有Servlet的jar包

    今天创建SpringMVC项目时 用到HttpServletRequest时, 发现项目中根本没有Servlet这个包, 在网上搜了一下,这个问题是因为web项目没有添加服务器导致的. 配置tomec ...

  9. 牛客NOIP提高组R1 C保护(主席树)

    题意 题目链接 Sol Orz lyq 我们可以把一支军队(u, v)拆分为两个(u, lca)和(v, lca) 考虑一个点x,什么时候军队对它有贡献,肯定是u或v在他的子树内,且lca在他的子树外 ...

  10. 2018.11.7 Nescafe29 T1 穿越七色虹

    题目 题目背景 在 Nescafe27 和 28 中,讲述了一支探险队前往 Nescafe 之塔探险的故事…… 当两位探险队员以最快的时间把礼物放到每个木箱里之后,精灵们变身为一缕缕金带似的光,簇簇光 ...