【Luogu】P2303Longge的问题(莫比乌斯反演)
就让我这样的蒟蒻发一个简单易想的题解吧!!!
这题我一开始一看,woc这不是莫比乌斯反演么,推推推,推到杜教筛,输出结果一看不对
emmm回来仔细想想……woc推错了?
然后撕烤半天打了个暴力,A了
首先我们学过莫比乌斯反演的一般能够想到枚举gcd,记为w
所以我们需要求的就是$\sum\limits_{w|n}w\sum\limits_{w|i}[gcd(i,n)=w]$
然后……就到了激动人心的构造函数环节……
设$F(w)=\sum\limits_{w|i}[w|gcd(i,n)]$
$f(w)=\sum\limits_{w|i}[w=gcd(i,n)]$
于是有$F(w)=\sum\limits_{w|d}f(d)$
于是……$f(w)=\sum\limits_{w|d}\mu(\frac{d}{w})F(d)$
容易(个屁,我手玩了半年)发现,当$d|n$时$F(d)=\frac{n}{d}$,其他情况下$F(d)=0$
然后问题就变成了$\sum\limits_{w|n}w\sum\limits_{w|d}\mu(\frac{d}{w})F(d)$
设$t=\frac{d}{w}$
原式化为$\sum\limits_{w|n}w\sum\limits_{t|d}\mu(t)F(tw)$
然后我们发现了什么?
没错w可以暴力枚举qwq!没错t可以暴力枚举qwq!
因为我们枚举到根n就可以枚举出n的所有因子! t同理!
来吧让我们暴……等等$\mu$怎么算?
废话啊按着莫比乌斯函数的定义暴力qwq!
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cctype>
#include<cstdlib>
#include<iostream>
#include<cmath>
#define maxn 5000020
using namespace std;
inline long long read(){
long long num=,f=;
char ch=getchar();
while(!isdigit(ch)){
if(ch=='-') f=-;
ch=getchar();
}
while(isdigit(ch)){
num=num*+ch-'';
ch=getchar();
}
return num*f;
} bool vis[maxn];
int prime[maxn],tot;
int mu[maxn]; inline int calcmu(long long n){
if(n<maxn) return mu[n];
long long sqt=sqrt(n);
long long now=n;int ans=;
for(int j=;j<=tot;++j){
int i=prime[j];
if(i>sqt) break;
if(now%i) continue;
int cnt=;
while((now%i)==){
cnt++; now/=i;
if(cnt>) return ;
}
ans++;
}
if(now>) ans++;
if(ans&) return -;
else return ;
} int main(){
mu[]=vis[]=;
for(int i=;i<maxn;++i){
if(vis[i]==){
prime[++tot]=i;
mu[i]=-;
}
for(int j=;j<=tot&&prime[j]*i<maxn;++j){
vis[i*prime[j]]=;
if(i%prime[j]) mu[i*prime[j]]=-mu[i];
else break;
}
}
long long n=read(),ans=;
int sqt=sqrt(n);
for(int i=;i<=sqt;++i){
if(n%i) continue;
long long d=n/i;long long now=;
long long sar=sqrt(d);
for(int j=;j<=sar;++j){
if(d%j) continue;
now+=calcmu(j)*(n/(j*i));
if(j*j==d) continue;
now+=calcmu(d/j)*(n/((d/j)*i));
}
ans+=now*i; if(1LL*i*i==n) continue;
long long ret=n/i;
d=n/ret;now=;
sar=sqrt(d);
for(int j=;j<=sar;++j){
if(d%j) continue;
now+=calcmu(j)*(n/(j*ret));
if(j*j==d) continue;
now+=calcmu(d/j)*(n/((d/j)*ret));
}
ans+=now*ret;
}
printf("%lld\n",ans);
return ;
}
【Luogu】P2303Longge的问题(莫比乌斯反演)的更多相关文章
- BZOJ 3930 Luogu P3172 选数 (莫比乌斯反演)
手动博客搬家:本文发表于20180310 11:46:11, 原地址https://blog.csdn.net/suncongbo/article/details/79506484 题目链接: (Lu ...
- [Luogu P3455] [POI2007]ZAP-Queries (莫比乌斯反演 )
题面 传送门:洛咕 Solution 这题比这题不懂简单到哪里去了 好吧,我们来颓柿子. 为了防止重名,以下所有柿子中的\(x\)既是题目中的\(d\) 为了方便讨论,以下柿子均假设\(b>=a ...
- 【Luogu】P3455Zip-Queries(莫比乌斯反演)
题目链接 真是神TM莫比乌斯 首先来看一个神奇的结论:求gcd(x,y)==k的对数,其中1<=x<=n,1<=y<=m 等同于求gcd(x,y)==1的对数,其中1<= ...
- 【Luogu】P2522Problemb(莫比乌斯反演)
题目链接 同Zip—Queries,但是用到容斥原理 设f(n,m)是(x,y)的对数,其中1<=x<=n,1<=y<=m 则有f(n,m)-f(a-1,n)-f(b-1,m) ...
- BZOJ 1101 Luogu P3455 POI 2007 Zap (莫比乌斯反演+数论分块)
手动博客搬家: 本文发表于20171216 13:34:20, 原地址https://blog.csdn.net/suncongbo/article/details/78819470 URL: (Lu ...
- [jzoj 6084] [GDOI2019模拟2019.3.25] 礼物 [luogu 4916] 魔力环 解题报告(莫比乌斯反演+生成函数)
题目链接: https://jzoj.net/senior/#main/show/6084 https://www.luogu.org/problemnew/show/P4916 题目: 题解: 注: ...
- [luogu P2586] GCD 解题报告 (莫比乌斯反演|欧拉函数)
题目链接:https://www.luogu.org/problemnew/show/P2568#sub 题目大意: 计算$\sum_{x=1}^n\sum_{y=1}^n [gcd(x,y)==p ...
- BZOJ 5330 Luogu P4607 [SDOI2018]反回文串 (莫比乌斯反演、Pollard Rho算法)
题目链接 (BZOJ) https://www.lydsy.com/JudgeOnline/problem.php?id=5330 (Luogu) https://www.luogu.org/prob ...
- [Luogu P1829] [国家集训队]Crash的数字表格 / JZPTAB (莫比乌斯反演)
题面 传送门:洛咕 Solution 调到自闭,我好菜啊 为了方便讨论,以下式子\(m>=n\) 为了方便书写,以下式子中的除号均为向下取整 我们来颓柿子吧qwq 显然,题目让我们求: \(\l ...
随机推荐
- 使用JDK自带的VisualVM进行Java程序的性能分析
VisualVM是什么? VisualVM是JDK自带的一个用于Java程序性能分析的工具,JDK安装完毕后就有啦,在JDK安装目录的bin文件夹下能找到名称为jvisualvm.exe. 要使用Vi ...
- Java变量、Java对象初始化顺序
局部变量与成员变量: 局部变量分为: 行参:在方法签名中定义的局部变量,随方法的结束而凋亡. 方法内的局部变量:必须在方法内对其显示初始化,从初始化后开始生效,随方法的结束而凋亡. 代码块内的局部变量 ...
- Robot Framework(一)入门
1.1简介 Robot Framework是一个基于Python的,可扩展的关键字驱动的测试自动化框架,用于端到端验收测试和验收测试驱动开发(ATDD).它可用于测试分布式异构应用程序,其中验证需要涉 ...
- SC || Chapter 5 复习向
可复用性 ┉┉∞ ∞┉┉┉┉∞ ∞┉┉┉∞ ∞┉┉ 行为子结构 对于父子的继承关系的要求: ·子类可以增加方法,但不可以删 ·子类需实现抽象类型中未实现的方法 ·子类重写(override)的方法必须 ...
- JS事件类型--1
滚轮事件其实就是一个mousewheel事件,这个事件跟踪鼠标滚轮,类似Mac的触屏版. 一.客户区坐标位置 鼠标事件都是在浏览器视口的特定位置上发生的.这个位置信息保存在事件对象的clientX和c ...
- npm 安装插件失败
由于npm的很多安装包的下载源来自国外网站,所以比较缓慢甚至访问失败. 再此可以用淘宝的镜像文件来安装插件.方法其实很简单:
- 关于flyme5显示不到和卸载不到旧应用解决方法
笔者买入一台mx5,升级flyme5后旧应用没有显示出来,而且在设置的应用管理都没显示旧应用. 通过adb命令: adb shell pm list packages显示所有包名, 查看自己要删除应用 ...
- 微信iOS多设备多字体适配方案总结
一.背景 2014下半年,微信iOS版先后适配iPad, iPhone6/6plus.随着这些大屏设备的登场,部分用户觉得微信的字体太小,但也有很多用户不喜欢太大的字体.为了满足不同用户的需求,我们做 ...
- 04Windows中的字符类型
1. Windows 中常用的数据类型定义 //WinNt.h中定义 typedef unsigned short wchar_t; //A 16-bit character typedef char ...
- ActiveXObject
只有IE浏览器才支持这个构造函数,可以用这个来判断,当前是否为IE浏览器 var isIE=!!window.ActiveXObject; 在IE的不同版本下,要创建XHR对象,也需要通过这个构造函数 ...