传送门

题解来自网络流24题:

【问题分析】

第一问时LIS,动态规划求解,第二问和第三问用网络最大流解决。

【建模方法】

首先动态规划求出F[i],表示以第i位为开头的最长上升序列的长度,求出最长上升序列长度K。

1、把序列每位i拆成两个点<i.a>和<i.b>,从<i.a>到<i.b>连接一条容量为1的有向边。

2、建立附加源S和汇T,如果序列第i位有F[i]=K,从S到<i.a>连接一条容量为1的有向边。

3、如果F[i]=1,从<i.b>到T连接一条容量为1的有向边。

4、如果j>i且A[i] < A[j]且F[j]+1=F[i],从<i.b>到<j.a>连接一条容量为1的有向边。

求网络最大流,就是第二问的结果。把边(<1.a>,<1.b>)(<N.a>,<N.b>)(S,<1.a>)(<N.b>,T)这四条边的容量修改为无穷大,再求一次网络最大流,就是第三问结果。

【建模分析】

上述建模方法是应用了一种分层图的思想,把图每个顶点i按照F[i]的不同分为了若干层,这样图中从S出发到T的任何一条路径都是一个满足条件的最长上升子序列。

由于序列中每个点要不可重复地取出,需要把每个点拆分成两个点。单位网络的最大流就是增广路的条数,所以最大流量就是第二问结果。

第三问特殊地要求x1和xn可以重复使用,只需取消这两个点相关边的流量限制,求网络最大流即可。

还有这个题题意有些问题,不是递增,是不递减。

——代码

 #include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#define N 2020
#define M 3000001
#define max(x, y) ((x) > (y) ? (x) : (y))
#define min(x, y) ((x) < (y) ? (x) : (y)) int n, ans, cnt, s, t, sum;
int a[N], f[N];
int head[N], to[M], val[M], next[M], dis[N], cur[N]; inline int read()
{
int x = , f = ;
char ch = getchar();
for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = -;
for(; isdigit(ch); ch = getchar()) x = (x << ) + (x << ) + ch - '';
return x * f;
} inline void add(int x, int y, int z)
{
to[cnt] = y;
val[cnt] = z;
next[cnt] = head[x];
head[x] = cnt++;
} inline bool bfs()
{
int i, u, v;
std::queue <int> q;
memset(dis, -, sizeof(dis));
q.push(s);
dis[s] = ;
while(!q.empty())
{
u = q.front(), q.pop();
for(i = head[u]; i ^ -; i = next[i])
{
v = to[i];
if(val[i] && dis[v] == -)
{
dis[v] = dis[u] + ;
if(v == t) return ;
q.push(v);
}
}
}
return ;
} inline int dfs(int u, int maxflow)
{
if(u == t) return maxflow;
int i, v, d, ret = ;
for(i = cur[u]; i ^ -; i = next[i])
{
v = to[i];
if(val[i] && dis[v] == dis[u] + )
{
d = dfs(v, min(val[i], maxflow - ret));
ret += d;
cur[u] = i;
val[i] -= d;
val[i ^ ] += d;
if(ret == maxflow) return ret;
}
}
return ret;
} inline void clear()
{
int i, j;
sum = cnt = ;
memset(head, -, sizeof(head));
for(i = ; i <= n; i++)
{
add(i, i + n, ), add(i + n, i, );
if(f[i] == ) add(s, i, ), add(i, s, );
if(f[i] == ans) add(i + n, t, ), add(t, i + n, );
}
for(i = ; i <= n; i++)
for(j = ; j < i; j++)
if(a[j] <= a[i] && f[j] + == f[i])
add(j + n, i, ), add(i, j + n, );
} int main()
{
int i, j, x;
n = read();
s = , t = (n << ) + ;
for(i = ; i <= n; i++)
{
a[i] = read();
x = ;
for(j = ; j < i; j++)
if(a[j] <= a[i])
x = max(x, f[j]);
f[i] = x + ;
ans = max(ans, f[i]);
}
printf("%d\n", ans);
clear();
while(bfs())
{
for(i = s; i <= t; i++) cur[i] = head[i];
sum += dfs(s, 1e9);
}
printf("%d\n", sum);
clear();
add(s, , 1e9), add(, s, );
add(, + n, 1e9), add( + n, , );
if(f[n] == ans)
{
add(n << , t, 1e9), add(t, n << , );
add(n, n << , 1e9), add(n << , n, );
}
while(bfs())
{
for(i = s; i <= t; i++) cur[i] = head[i];
sum += dfs(s, 1e9);
}
printf("%d\n", sum);
return ;
}

[luoguP2766] 最长递增子序列问题(最大流)的更多相关文章

  1. COGS731 [网络流24题] 最长递增子序列(最大流)

    给定正整数序列x1,..., xn (n<=500).(1)计算其最长递增子序列的长度s.(2)计算从给定的序列中最多可取出多少个长度为s的递增子序列.(3)如果允许在取出的序列中多次使用x1和 ...

  2. Libre 6005 「网络流 24 题」最长递增子序列 / Luogu 2766 最长递增子序列问题(网络流,最大流)

    Libre 6005 「网络流 24 题」最长递增子序列 / Luogu 2766 最长递增子序列问题(网络流,最大流) Description 问题描述: 给定正整数序列x1,...,xn . (1 ...

  3. Cogs 731. [网络流24题] 最长递增子序列(最大流)

    [网络流24题] 最长递增子序列 ★★★☆ 输入文件:alis.in 输出文件:alis.out 简单对比 时间限制:1 s 内存限制:128 MB «问题描述: 给定正整数序列x1,-, xn. ( ...

  4. 【刷题】LOJ 6005 「网络流 24 题」最长递增子序列

    题目描述 给定正整数序列 \(x_1 \sim x_n\) ,以下递增子序列均为非严格递增. 计算其最长递增子序列的长度 \(s\) . 计算从给定的序列中最多可取出多少个长度为 \(s\) 的递增子 ...

  5. (转载)最长递增子序列 O(NlogN)算法

    原博文:传送门 最长递增子序列(Longest Increasing Subsequence) 下面我们简记为 LIS. 定义d[k]:长度为k的上升子序列的最末元素,若有多个长度为k的上升子序列,则 ...

  6. 最长公共子序列(LCS)和最长递增子序列(LIS)的求解

    一.最长公共子序列 经典的动态规划问题,大概的陈述如下: 给定两个序列a1,a2,a3,a4,a5,a6......和b1,b2,b3,b4,b5,b6.......,要求这样的序列使得c同时是这两个 ...

  7. 最长递增子序列 O(NlogN)算法

    转自:点击打开链接 最长递增子序列,Longest Increasing Subsequence 下面我们简记为 LIS. 排序+LCS算法 以及 DP算法就忽略了,这两个太容易理解了. 假设存在一个 ...

  8. 51nod 1134 最长递增子序列

    题目链接:51nod 1134 最长递增子序列 #include<cstdio> #include<cstring> #include<algorithm> usi ...

  9. 动态规划 - 最长递增子序列(LIS)

    最长递增子序列是动态规划中经典的问题,详细如下: 在一个已知的序列{a1,a2,...,an}中,取出若干数组组成新的序列{ai1,ai2,...,aim},其中下标i1,i2,...,im保持递增, ...

随机推荐

  1. UVA 1623 Enther the Dragon 神龙喝水 (贪心)

    贪心,每次遇到一个满水的湖要下暴雨的时候,就往前找之前最后一次满水之后的第一个没有下雨的且没有被用掉天day1. 因为如果不选这day1,那么之后的湖不一定能选上这一天.如果这一天后面还有没有下雨的天 ...

  2. 用python Image读图

    https://www.cnblogs.com/kongzhagen/p/6295925.html import os name = [] with open('/media/hdc/xing/Dee ...

  3. Stream great concerts wherever you are

    This time of year, we take stock of what we're thankful for — and above all else, we’re thankful for ...

  4. 《队长说得队》第九次团队作业:Beta冲刺与验收准备

    项目 内容 这个作业属于哪个课程 >>2016级计算机科学与工程学院软件工程(西北师范大学) 这个作业的要求在哪里 >>实验十三 团队作业9:Beta冲刺与团队项目验收 团队名 ...

  5. 7.Props向子组件传递数据

    组件实例的作用域是孤立的.这意味着不能并且不应该在子组件的模板内直接引用父组件的数据. 可以使用 props 把数据传给子组件. for-child-msg="aaa"  , fo ...

  6. c++ 调用php

    int _System(const char * cmd, std::string& strRet) { FILE * fp; char * p = NULL; ; if ((fp = _po ...

  7. Oracle 数据库常用SQL语句(2)查询语句

    一.SQL基础查询 1.select语句 格式:select 字段 from 表名; 2.where 用于限制查询的结果. 3.查询条件 > < >= <= = != 4.与 ...

  8. destoon 配置文件config.inc.php参数说明

    $CFG['db_host']数据库服务器,可以包括端口号,一般为localhost $CFG['db_user']数据库用户名,一般为root $CFG['db_pass']数据库密码 $CFG[' ...

  9. SQL登录注册练习

    /class User package com.neusoft.bean; public class User { private int password; private String name; ...

  10. Ubuntu 15 下 Qt 配置mysql链接及基本操作

    序 最近需要在Linux下做一个unix网络编程项目,选择了Ubuntu 最新版本15.04 : 开发环境:Qt 5 数据库: MySQL 安装Qt 和 MySQL 简要介绍一下软件的安装! 安装Qt ...