【BZOJ2666】[cqoi2012]组装 贪心
【BZOJ2666】[cqoi2012]组装
Description
Input
Output
Sample Input
-1 3
0 1
2 3
4 2
5 2
Sample Output
题解:易证:如果已知每种零件生产车间的位置,那么组装车间的位置一定是它们的中点。(自己列列式子就知道了。)
那么我们只需要知道每种零件生产车间的位置即可,对于相邻的同种车间i和i+1,当pi<x<mid时选择i,当mid<x<pi+1时选择i+1,那么我们只需要把所有的中间点都拿出来排个序,扫一遍统计答案即可。
#include <cstdio>
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn=100010;
int n,m,tot;
double s1,s2,ans,minn;
double x[maxn],y;
int c[maxn],last[10010],pre[maxn];
struct node
{
double pos;
int nxt;
}p[maxn];
inline int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-')f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret*f;
}
bool cmp(node a,node b)
{
return a.pos<b.pos;
}
int main()
{
n=rd(),m=rd();
int i;
for(i=1;i<=m;i++)
{
x[i]=rd(),c[i]=rd();
if(!last[c[i]]) s1+=x[i],s2+=x[i]*x[i];
else pre[i]=last[c[i]],p[++tot].pos=(x[i]+x[last[c[i]]])/2,p[tot].nxt=i;
last[c[i]]=i;
}
sort(p+1,p+tot+1,cmp);
ans=y=s1/n,minn=s2-2*s1*y+y*y*n;
for(i=1;i<=tot;i++)
{
s2-=x[pre[p[i].nxt]]*x[pre[p[i].nxt]],s1-=x[pre[p[i].nxt]];
s2+=x[p[i].nxt]*x[p[i].nxt],s1+=x[p[i].nxt];
y=s1/n;
if(minn>s2-2*s1*y+y*y*n) minn=s2-2*s1*y+y*y*n,ans=y;
}
printf("%.4lf",ans);
return 0;
}
【BZOJ2666】[cqoi2012]组装 贪心的更多相关文章
- [CQOI2012]组装 贪心
[CQOI2012]组装 贪心好题. LG传送门 首先有一个必须要能推的式子:设第\(i\)种零件选的生产车间位置为\(x _ i\),组装车间位置为\(x\), 则总的花费为 \[f(x) = \s ...
- Luogu3162 CQOI2012 组装 贪心
传送门 如果提供每一种零件的生产车间固定了,那么总时间\(t\)与组装车间的位置\(x\)的关系就是 \(t = \sum (x-a_i)^2 = nx^2-2\sum a_ix + \sum a_i ...
- [CQOI2012]组装 (贪心)
CQOI2012]组装 solution: 蒟蒻表示并不会模拟退火,所以用了差分数组加贪心吗.我们先来看题: 在数轴上的某个位置修建一个组装车间 到组装车间距离的平方的最小值. 1<=n< ...
- luogu P3162 [CQOI2012]组装
传送门 mdzz,为什么这题有个贪心的标签啊qwq 首先考虑每一种车间,对于每相邻两个车间,在中点左边那么左边那个会贡献答案,在右边就右边那个更优 所以总共会有m-1个这样的分界中点,然后最多有m+1 ...
- BZOJ 2666: [cqoi2012]组装
题目链接:http://www.lydsy.com:808/JudgeOnline/problem.php?id=2666 题意:n种零件,m个位置,每个位置有一种零件.求一个位置x,使得cost(1 ...
- P3162 [CQOI2012]组装
传送门 退火大法好 我并不会正解于是只好打退火了--其他没啥好讲--只要对每一种颜色开一个vector,存一下所有这个颜色的位置,判定的时候可以去所有的颜色里二分找到前缀和后缀,把和当前点距离小的加入 ...
- 【题解】P3162CQOI2012组装
[题解][CQOI2012]组装 考虑化为代数的形式,序列\(\left[a_i \right]\)表示选取的\(i\)种类仓库的坐标. \(ans=\Sigma(a_i-x)^2,(*)\),展开: ...
- bzoj AC倒序
Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...
- [BZOJ2667][cqoi2012]模拟工厂 贪心
2667: [cqoi2012]模拟工厂 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 367 Solved: 184[Submit][Status] ...
随机推荐
- Nowcoder Girl 参考题解【待写】
[官方题解]:https://www.nowcoder.com/discuss/65411?toCommentId=1134823 [题目链接]:https://www.nowcoder.com/te ...
- linux grep 搜索查找
查找关键字在哪些文件夹中的哪些文件中出现(只列出文件名称): grep -l 15386257298 */* 查找关键字在哪些文件夹中的哪些文件中出现(列出文件名称+关键字): grep -o 153 ...
- 【ActiveMQ】1.下载安装启动使用
官网下载:http://activemq.apache.org/activemq-5121-release.html 官网指导文档:http://activemq.apache.org/version ...
- oracle软件安装完毕之后,如何创建数据库
oracle软件安装完毕之后,如何创建数据库 学习了:https://zhidao.baidu.com/question/1800966379896476147.html 使用了Database Co ...
- C 共用体
C 共用体 共用体是一种特殊的数据类型,允许您在相同的内存位置存储不同的数据类型.您可以定义一个带有多成员的共用体,但是任何时候只能有一个成员带有值.共用体提供了一种使用相同的内存位置的有效方式. 定 ...
- 伪静态对struts action的重写
参见 http://ocaicai.iteye.com/blog/1312189 最重要的而是在web.xml中配置 <filter-mapping> <filter-name> ...
- C++的双重检查锁并不安全(转)
一个典型的单例模式构建对象的双重检查锁如下: static Singleton * getSingleObject() { if(singleObject==NULL) { lock(); if(si ...
- Codeforces Round #243 (Div. 2)——Sereja and Table
看这个问题之前,能够先看看这个论文<一类算法复合的方法>,说白了就是分类讨论,可是这个思想非常重要 题目链接 题意: 首先给出联通块的定义:对于相邻(上下和左右)的同样的数字视为一个联通块 ...
- 转:HDMI介绍与流程
HDMI介绍与流程 HDMI,全称为(High Definition Multimedia Interface)高清多媒体接口,主要用于传输高清音视频信号. HDMI引脚: HDMI有A,B,C, ...
- centos-64整合nginx和tomcat
centos-64整合nginx和tomcat 分类: Linux 2013-04-25 10:41 128人阅读 评论(0) 收藏 举报 1.安装wget和依赖包 yum install wget ...