caffe配置Makefile.config----ubuntu16.04--重点是matlab的编译
来源: http://blog.csdn.net/daaikuaichuan/article/details/61414219
配置Makefile.config(参考:http://blog.csdn.net/autocyz/article/details/51783857 )
折腾到这一步,离成功就不远了,接下来就是配置之前搁置的Makefile.config,进入caffe根目录,使用vim编辑器打开Makefile.config。
在打开的Makefile.config修改如下内容(我自己的配置):
USE_OPENCV := 1
USE_LEVELDB := 1
USE_LMDB := 1
CUSTOM_CXX := g++
CUDA_DIR := /usr/local/cuda-7.5
CUDA_ARCH := -gencode arch=compute_20,code=sm_20 \
-gencode arch=compute_20,code=sm_21 \
-gencode arch=compute_30,code=sm_30 \
-gencode arch=compute_35,code=sm_35 \
-gencode arch=compute_50,code=sm_50 \
-gencode arch=compute_50,code=compute_50
BLAS := atlas
MATLAB_DIR := /home/eric/MATLAB2014/R2014a
PYTHON_INCLUDE := /usr/include/python2.7 \
/usr/lib/python2.7/dist-packages/numpy/core/include
PYTHON_LIB := /usr/local/lib
WITH_PYTHON_LAYER := 1
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linux-gnu /usr/lib/x86_64-linux-gnu/hdf5/serial
BUILD_DIR := build
DISTRIBUTE_DIR := distribute
9、make所有文件
进入caffe根目录,输入如下命令:
sudo make clean
sudo make all -j4
sudo make test -j4
sudo make runtest -j4
sudo make pycaffe -j4
sudo make matcaffe -j4
在命令行下输入Python,会出现Python的一些信息,然后输入import caffe,没有报错说明配置成功。在命令行下输入matlab,会打开MATLAB软件。
如果前面所有的配置过程都没有问题的话,最后一步应该是不会出错的。至此,caffe所有的配置项都完成了,接下来就可以愉快地使用这个强大的深度学习框架了。
下面的是我的实际用的:
## Refer to http://caffe.berkeleyvision.org/installation.html
# Contributions simplifying and improving our build system are welcome! BUILD_PYTHON:=
BUILD_MATLAB:=
BUILD_docs:=
BUILD_SHARELIB:= # cuDNN acceleration switch (uncomment to build with cuDNN).
USE_CUDNN := # CPU-only switch (uncomment to build without GPU support).
# CPU_ONLY := # uncomment to disable IO dependencies and corresponding data layers
USE_OPENCV :=
USE_LEVELDB :=
USE_LMDB := # uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary)
# You should not set this flag if you will be reading LMDBs with any
# possibility of simultaneous read and write
# ALLOW_LMDB_NOLOCK := # Uncomment if you're using OpenCV 3
# OPENCV_VERSION := 3 # To customize your choice of compiler, uncomment and set the following.
# N.B. the default for Linux is g++ and the default for OSX is clang++
CUSTOM_CXX := g++ # CUDA directory contains bin/ and lib/ directories that we need.
CUDA_DIR := /usr/local/cuda
# On Ubuntu 14.04, if cuda tools are installed via
# "sudo apt-get install nvidia-cuda-toolkit" then use this instead:
# CUDA_DIR := /usr # CUDA architecture setting: going with all of them.
# For CUDA < 6.0, comment the *_50 through *_61 lines for compatibility.
# For CUDA < 8.0, comment the *_60 and *_61 lines for compatibility.
CUDA_ARCH := -gencode arch=compute_20,code=sm_20 \
-gencode arch=compute_20,code=sm_21 \
-gencode arch=compute_30,code=sm_30 \
-gencode arch=compute_35,code=sm_35 \
-gencode arch=compute_50,code=sm_50 \
-gencode arch=compute_52,code=sm_52 \
-gencode arch=compute_60,code=sm_60 \
-gencode arch=compute_61,code=sm_61 \
-gencode arch=compute_61,code=compute_61 # BLAS choice:
# atlas for ATLAS (default)
# mkl for MKL
# open for OpenBlas
BLAS := atlas
# Custom (MKL/ATLAS/OpenBLAS) include and lib directories.
# Leave commented to accept the defaults for your choice of BLAS
# (which should work)!
BLAS_INCLUDE := /usr/include
BLAS_LIB := /usr/lib # Homebrew puts openblas in a directory that is not on the standard search path
# BLAS_INCLUDE := $(shell brew --prefix openblas)/include
# BLAS_LIB := $(shell brew --prefix openblas)/lib # This is required only if you will compile the matlab interface.
# MATLAB directory should contain the mex binary in /bin.
MATLAB_DIR := /usr/local/MATLAB/R2016b
# MATLAB_DIR := /Applications/MATLAB_R2012b.app # NOTE: this is required only if you will compile the python interface.
# We need to be able to find Python.h and numpy/arrayobject.h.
PYTHON_INCLUDE := /usr/include/python2.7 \
/usr/lib/python2.7/dist-packages/numpy/core/include #PYTHON_LIB:=/usr/lib/x86_64-linux-gnu/libpython2.7.so
# Anaconda Python distribution is quite popular. Include path:
# Verify anaconda location, sometimes it's in root.
# ANACONDA_HOME := $(HOME)/anaconda
# PYTHON_INCLUDE := $(ANACONDA_HOME)/include \
# $(ANACONDA_HOME)/include/python2.7 \
# $(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include # Uncomment to use Python (default is Python )
# PYTHON_LIBRARIES := boost_python3 python3.5m
# PYTHON_INCLUDE := /usr/include/python3.5m \
# /usr/lib/python3.5/dist-packages/numpy/core/include # We need to be able to find libpythonX.X.so or .dylib.
PYTHON_LIB := /usr/lib /usr/local/lib /usr/lib/x86_64-linux-gnu/
# PYTHON_LIB := $(ANACONDA_HOME)/lib # Homebrew installs numpy in a non standard path (keg only)
# PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include
# PYTHON_LIB += $(shell brew --prefix numpy)/lib # Uncomment to support layers written in Python (will link against Python libs)
WITH_PYTHON_LAYER := # Whatever else you find you need goes here.
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib # If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies
# INCLUDE_DIRS += $(shell brew --prefix)/include
# LIBRARY_DIRS += $(shell brew --prefix)/lib # NCCL acceleration switch (uncomment to build with NCCL)
# https://github.com/NVIDIA/nccl (last tested version: v1.2.3-1+cuda8.0)
# USE_NCCL := # Uncomment to use `pkg-config` to specify OpenCV library paths.
# (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.)
# USE_PKG_CONFIG := # N.B. both build and distribute dirs are cleared on `make clean`
BUILD_DIR := build
DISTRIBUTE_DIR := distribute # Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171
# DEBUG := # The ID of the GPU that 'make runtest' will use to run unit tests.
TEST_GPUID := # enable pretty build (comment to see full commands)
Q ?= @ #INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial/
INCLUDE_DIRS := $(INCLUDE_DIRS) /usr/local/include /usr/include/hdf5/serial/
LIBRARIES += glog gflags protobuf boost_system boost_filesystem m hdf5_serial_hl hdf5_serial LIBRARY_DIRS:=$(LIBRARIES_DIRS) /usr/lib/x86_64-linux-gnu/hdf5/serial
sea@sea-X550JK:~/caffeM/caffe$ ll matlab/+caffe/
总用量 76
drwxrwxr-x 5 sea sea 4096 11月 9 17:26 ./
drwxrwxr-x 5 sea sea 4096 11月 9 17:26 ../
-rw-rw-r-- 1 sea sea 2930 11月 9 17:26 Blob.m
-rw-rw-r-- 1 sea sea 1207 11月 9 17:26 get_net.m
-rw-rw-r-- 1 sea sea 298 11月 9 17:26 get_solver.m
drwxrwxr-x 2 sea sea 4096 11月 9 17:26 imagenet/
-rw-rw-r-- 1 sea sea 1742 11月 9 17:26 io.m
-rw-rw-r-- 1 sea sea 841 11月 9 17:26 Layer.m
-rw-rw-r-- 1 sea sea 4912 11月 9 17:26 Net.m
drwxrwxr-x 2 sea sea 4096 11月 10 19:48 private/
-rw-rw-r-- 1 sea sea 172 11月 9 17:26 reset_all.m
-rw-rw-r-- 1 sea sea 393 11月 9 17:26 run_tests.m
-rw-rw-r-- 1 sea sea 250 11月 9 17:26 set_device.m
-rw-rw-r-- 1 sea sea 97 11月 9 17:26 set_mode_cpu.m
-rw-rw-r-- 1 sea sea 97 11月 9 17:26 set_mode_gpu.m
-rw-rw-r-- 1 sea sea 1872 11月 9 17:26 Solver.m
drwxrwxr-x 2 sea sea 4096 11月 9 17:26 +test/
-rw-rw-r-- 1 sea sea 110 11月 9 17:26 version.m
sea@sea-X550JK:~/caffeM/caffe$
# /etc/profile: system-wide .profile file for the Bourne shell (sh(1))
# and Bourne compatible shells (bash(1), ksh(1), ash(1), ...). if [ "$PS1" ]; then
if [ "$BASH" ] && [ "$BASH" != "/bin/sh" ]; then
# The file bash.bashrc already sets the default PS1.
# PS1='\h:\w\$ '
if [ -f /etc/bash.bashrc ]; then
. /etc/bash.bashrc
fi
else
if [ "`id -u`" -eq 0 ]; then
PS1='# '
else
PS1='$ '
fi
fi
fi if [ -d /etc/profile.d ]; then
for i in /etc/profile.d/*.sh; do
if [ -r $i ]; then
. $i
fi
done
unset i
fi export PYTHONPATH=/usr/local:$PYTHONPATH
export PYTHONPATH=$PYTHONPATH:/home/sea/caffe2/build export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH export PYTHONPATH=/home/sea/caffeM/caffe/python:$PYTHONPATH export PATH=$PATH:/home/sea/caffeM/caffe/build/tools/:/usr/local/cuda-8.0/bin
export LD_LIBRARY_PATH=/usr/local/cuda-8.0/lib:$LD_LIBRARY_PATH export PYTHONPATH=$PYTHONPATH:/home/sea/caffeM/caffe/python export PATH=$PATH:/usr/local/MATLAB/R2016b/bin export MATLABDIR=/usr/local/MATLAB/R2016b
export Matlab_mex=/usr/local/MATLAB/R2016b/bin/mex
export Matlab_mexext=/usr/local/MATLAB/R2016b/bin/mexext
caffe配置Makefile.config----ubuntu16.04--重点是matlab的编译的更多相关文章
- Ubuntu16.04+cuda9.0+matlab+opencv3.3+caffe服务器配置(问题汇总)
Ubuntu16.04+cuda9.0+matlab+opencv3.3+caffe服务器配置(附遇到的错误和解决方法) 1.具体安装前需要的依赖包: ubuntu dependency: sudo ...
- MySql5.7免安装版配置过程(ubuntu16.04)
MySql5.7免安装版配置过程(ubuntu16.04) 原创 2017年02月07日 16:58:24 标签: 1001 编辑 删除 一.安装环境: 操作系统:ubuntu16.04 数据库:my ...
- Ubuntu16.04下安装MATLAB 2016b!完美运行
目录 1.下载MATLAB 2016b 2.挂载iso 3.安装MATLAB 4.破解 5.快捷键与运行 1.下载MATLAB 2016b 下载matlab 2016b for linux(可以百度搜 ...
- caffe学习一:ubuntu16.04下跑Faster R-CNN demo (基于caffe). (亲测有效,记录经历两天的吐血经历)
兜兜转转,兜兜转转; 一次有一次,这次终于把Faster R-CNN 跑通了. 重要提示1:在开始跑Faster R-CNN之前一定要搞清楚用的是Python2 还是Python3. 不然你会无限次陷 ...
- Ubuntu16.04下的modules模块编译加载
一.首先编写对应的驱动程序的相关内容:(最简单的hello.c程序) #include<linux/init.h> #include<linux/module.h> MODUL ...
- caffe学习二:py-faster-rcnn配置运行faster_rcnn_end2end-VGG_CNN_M_1024 (Ubuntu16.04)
本文的主要目的是学习记录. 原文连接:https://blog.csdn.net/samylee/article/details/51099508 本博客中我将对py-faster-rcnn配置运行f ...
- caffe中Makefile.config详解
## Refer to http://caffe.berkeleyvision.org/installation.html # Contributions simplifying and improv ...
- 配置YOLO2(ubuntu16.04+cuda8.0+opencv3.1.0)
要求已经安装好了CUDA 8.0 以及OpenCV3.1.0 YOLO官方网站 配置darknet git clone https://github.com/pjreddie/darknet cd d ...
- tensorflow学习笔记一------下载安装,配置环境(基于ubuntu16.04 pycharm)
一,安装TensorFlow 安装所有必备工具 sudo apt-get install python-pip python-dev python-virtualenv 安装TensorFlow su ...
随机推荐
- 【CCF】商路
[60分] #include<iostream> #include<cstdio> #include<cstring> #include<string> ...
- APM-应用性能管理
APM(应用性能管理) 在信息科学和系统控制领域,APM致力于监控和管理应用软件性能和可用性.通过监测和诊断复杂应用程序的性能问题,来保证软件应用程序的良好运行(预期的服务),APM已经商用 基本定义 ...
- mod性质 学习笔记
mod性质小结 \(a\equiv b(\mod m)\) $ \rightarrow \( \)a-b=k*m,k\in Z$ \(a\equiv b且c\equiv d(\mod m)\) \(\ ...
- C#精髓第四讲 GridView 72般绝技
原文发布时间为:2008-08-03 -- 来源于本人的百度文章 [由搬家工具导入] 原文地址:http://blog.csdn.net/21aspnet/archive/2007/03/25/154 ...
- web实时长图实践--摘抄
背景简介 全民K歌专辑发布新玩法,传统宣传专辑战绩的流程,从获取数据,到制作海报,到传播,周期长运营成本高,如何快速分享战绩进行荣誉感的传播成为一个亟待解决的问题. 产品:能不能在专辑大事件触发时,自 ...
- 浅谈js函数三种定义方式 & 四种调用方式 & 调用顺序
在Javascript定义一个函数一般有如下三种方式: 函数关键字(function)语句: function fnMethodName(x){alert(x);} 函数字面量(Function Li ...
- 慕课 python 操作数据库2 银行转账实例
CREATE TABLE `account` ( `acctid` ) DEFAULT NULL COMMENT '账户ID', `) DEFAULT NULL COMMENT '余额' ) ENGI ...
- linux内核栈与用户栈【转】
转自:http://19880512.blog.51cto.com/936364/274610 最近linux内核的中断部分,总是被书里的栈弄晕,一会儿内核栈,一会儿用户栈的……很是崩溃,在网上goo ...
- PHP解码Json(json_decode)字符串返回NULL的原因及解决方法(转载)
本文主要为大家讲解了php在使用json_decode函数解码json字符串时,解码不成功返回NULL的问题原因分析和解决方法,感兴趣的同学参考下. 一般来说,php对json字符串解码使用json_ ...
- 基于sklearn的分类器实战
已迁移到我新博客,阅读体验更佳基于sklearn的分类器实战 完整代码实现见github:click me 一.实验说明 1.1 任务描述 1.2 数据说明 一共有十个数据集,数据集中的数据属性有全部 ...