ES搜索排序,文档相关度评分介绍——Vector Space Model
Vector Space Model
The vector space model provides a way of comparing a multiterm query against a document. The output is a single score that represents how well the document matches the query. In order to do this, the model represents both the document and the query as vectors.
A vector is really just a one-dimensional array containing numbers, for example:
[1,2,5,22,3,8]
In the vector space model, each number in the vector is the weight of a term, as calculated with term frequency/inverse document frequency.
While TF/IDF is the default way of calculating term weights for the vector space model, it is not the only way. Other models like Okapi-BM25 exist and are available in Elasticsearch. TF/IDF is the default because it is a simple, efficient algorithm that produces high-quality search results and has stood the test of time.
Imagine that we have a query for “happy hippopotamus.” A common word like happy will have a low weight, while an uncommon term like hippopotamus will have a high weight. Let’s assume that happyhas a weight of 2 and hippopotamus has a weight of 5. We can plot this simple two-dimensional vector—[2,5]—as a line on a graph starting at point (0,0) and ending at point (2,5), as shown inFigure 27, “A two-dimensional query vector for “happy hippopotamus” represented”.
Figure 27. A two-dimensional query vector for “happy hippopotamus” represented

Now, imagine we have three documents:
- I am happy in summer.
- After Christmas I’m a hippopotamus.
- The happy hippopotamus helped Harry.
We can create a similar vector for each document, consisting of the weight of each query term—happy and hippopotamus—that appears in the document, and plot these vectors on the same graph, as shown in Figure 28, “Query and document vectors for “happy hippopotamus””:
- Document 1:
(happy,____________)—[2,0] - Document 2:
( ___ ,hippopotamus)—[0,5] - Document 3:
(happy,hippopotamus)—[2,5]
Figure 28. Query and document vectors for “happy hippopotamus”

The nice thing about vectors is that they can be compared. By measuring the angle between the query vector and the document vector, it is possible to assign a relevance score to each document. The angle between document 1 and the query is large, so it is of low relevance. Document 2 is closer to the query, meaning that it is reasonably relevant, and document 3 is a perfect match.
In practice, only two-dimensional vectors (queries with two terms) can be plotted easily on a graph. Fortunately, linear algebra—the branch of mathematics that deals with vectors—provides tools to compare the angle between multidimensional vectors, which means that we can apply the same principles explained above to queries that consist of many terms.
You can read more about how to compare two vectors by using cosine similarity.
Now that we have talked about the theoretical basis of scoring, we can move on to see how scoring is implemented in Lucene.
ES搜索排序,文档相关度评分介绍——Vector Space Model的更多相关文章
- ES搜索排序,文档相关度评分介绍——TF-IDF—term frequency, inverse document frequency, and field-length norm—are calculated and stored at index time.
Theory Behind Relevance Scoring Lucene (and thus Elasticsearch) uses the Boolean model to find match ...
- ES搜索排序,文档相关度评分介绍——Field-length norm
Field-length norm How long is the field? The shorter the field, the higher the weight. If a term app ...
- ES 文档与索引介绍
在之前的文章中,介绍了 ES 整体的架构和内容,这篇主要针对 ES 最小的存储单位 - 文档以及由文档组成的索引进行详细介绍. 会涉及到如下的内容: 文档的 CURD 操作. Dynamic Mapp ...
- ES-PHP向ES批量添加文档报No alive nodes found in your cluster
ES-PHP向ES批量添加文档报No alive nodes found in your cluster 2016年12月14日 12:31:40 阅读数:2668 参考文章phpcurl 请求Chu ...
- atitit.vod search doc.doc 点播系统搜索功能设计文档
atitit.vod search doc.doc 点播系统搜索功能设计文档 按键的enter事件1 Left rig事件1 Up down事件2 key_events.key_search = fu ...
- 认识DOM 文档对象模型DOM(Document Object Model)定义访问和处理HTML文档的标准方法。元素、属性和文本的树结构(节点树)。
认识DOM 文档对象模型DOM(Document Object Model)定义访问和处理HTML文档的标准方法.DOM 将HTML文档呈现为带有元素.属性和文本的树结构(节点树). 先来看看下面代码 ...
- es之对文档进行更新操作
5.7.1:更新整个文档 ES中并不存在所谓的更新操作,而是用新文档替换旧文档: 在内部,Elasticsearch已经标记旧文档为删除并添加了一个完整的新文档并建立索引.旧版本文档不会立即消失 ,但 ...
- es搜索排序不正确
沿用该文章里的数据https://www.cnblogs.com/MRLL/p/12691763.html 查询时发现,一模一样的name,但是相关度不一样 GET /z_test/doc/_sear ...
- MongoDB中的映射,限制记录和记录拼排序 文档的插入查询更新删除操作
映射 在 MongoDB 中,映射(Projection)指的是只选择文档中的必要数据,而非全部数据.如果文档有 5 个字段,而你只需要显示 3 个,则只需选择 3 个字段即可. find() 方法 ...
随机推荐
- Git 学习之--安装配置GitHub
楼主今天学习了一下Git的使用,而且Androdi studio 下加入了Git插件,成功提交项目到自己Github个人主页 watermark/2/text/aHR0cDovL2Jsb2cuY3Nk ...
- cookie-小总结吧
写入common.js文件,其他页面调用即可: //添加cookie值 function addcookie(name, value, days) { days = days || 0; var ex ...
- [javase学习笔记]-8.2 成员变量与静态变量的差别
这一节我们看一看成员变量与静态变量的差别所在. 什么是静态变量呢?我们上节用statickeyword时就提到了静态变量.也就是说用statickeyword修饰的变量就是静态变量. 我们在6.4节学 ...
- 转:office 2016最新安装及激活教程(KMS)
office 2016最新安装及激活教程(KMS)[亲测有效]!! win7激活教程 博主的一个朋友,咳咳……你们懂得,想装office,于是我就上网找了一下激活的方法,亲测有效,而且也没有什么广 ...
- 封装CLLocationManager定位获取经纬度
创建调用方法,在.h文件里 #import <Foundation/Foundation.h> @interface RMMapLocation : NSObject { void (^s ...
- 自己定义ViewGroup控件(二)----->流式布局进阶(二)
main.xml <?xml version="1.0" encoding="utf-8"? > <com.example.SimpleLay ...
- 简单手机端头部设置 及css代码
<html> <head> <title>今日报表</title> <meta http-equiv="Content-Type&quo ...
- python学习(一)运行第一个python脚本
当然这里指的是在linux或者unix下,像写bash脚本那样 #!/usr/bin/python print('The Bright Side ' + 'of Life...') 反正我建议就算一开 ...
- php nginx超时出错
执行PHP操作大文件insert mysql数据库时,出现这个错误提示 The page you are looking for is temporarily unavailable.Please t ...
- 规范-Git打标签与版本控制
Git打标签与版本控制规范 前言 本文适用于使用Git做VCS(版本控制系统)的场景. 用过Git的程序猿,都喜欢其分布式架构带来的commit快感.不用像使用SVN这种集中式版本管理系统,每一次提交 ...