ceoi2017 Building Bridges(build)
Building Bridges(build)
题目描述
A wide river has nn pillars of possibly different heights standing out of the water. They are arranged in a straight line from one bank to the other. We would like to build a bridge that uses the pillars as support. To achieve this we will select a subset of pillars and connect their tops into sections of a bridge. The subset has to include the first and the last pillar.
The cost of building a bridge section between pillars ii and jj is (hi−hj)2(hi−hj)2 as we want to avoid uneven sections, where hihi is the height of the pillar ii. Additionally, we will also have to remove all the pillars that are not part of the bridge, because they obstruct the river traffic. The cost of removing the i−thi−th pillar is equal to wiwi. This cost can even be negative—some interested parties are willing to pay you to get rid of certain pillars. All the heights hihi and costs wiwi are integers.
What is the minimum possible cost of building the bridge that connects the first and last pillar?
有 n 根柱子依次排列,每根柱子都有一个高度。第 i 根柱子的高度为 hi。
现在想要建造若干座桥,如果一座桥架在第 i 根柱子和第 j根柱子之间,那么需要 (hi−hj)^2 的代价。
在造桥前,所有用不到的柱子都会被拆除,因为他们会干扰造桥进程。第 i 根柱子被拆除的代价为 wi,注意 wi 不一定非负,因为可能政府希望拆除某些柱子。
现在政府想要知道,通过桥梁把第 1 根柱子和第 n 根柱子连接的最小代价。注意桥梁不能在端点以外的任何地方相交。
输入
The first line contains the number of pillars, nn.
The second line contains pillar heights hihi in the order, separated by a space.
The third line contains wiwi in the same order, the costs of removing pillars.
第一行一个正整数 n。
第二行 n 个空格隔开的整数,依次表示h1,h2,⋯,hnh1,h2,⋯,hn。
第三行 n 个空格隔开的整数,依次表示w1,w2,⋯,wnw1,w2,⋯,wn。
输出
Output the minimum cost for building the bridge. Note that it can be negative.
输出一行一个整数表示最小代价,注意最小代价不一定是正数。
样例输入
6
3 8 7 1 6 6
0 -1 9 1 2 0
样例输出
17
提示
Constraints
• 2 <= n <= 10^5
• 0 <= hi <= 10^6
• 0 <= |wi| <= 10^6
Subtask 1 (30 points)
• n <= 1, 000
Subtask 2 (30 points)
• optimal solution includes at most 2 additional pillars (besides the first and last) • |wi| <= 20
Subtask 3 (40 points)
• no additional constraints
来源
solution
把w前缀和起来
我们可以得到一个n^ 2 DP
把它写成斜率优化的形式
斜率不单调,x不单调。
不会splay,那就cdq分治。
把h排序,然后就是单调的了
构出凸包,斜率优化即可
吐槽:cdq细节真是多
注意算斜率时
有时是+inf (a.x==b.x&&a.y<b.y)
有时是-inf (a.x==b.x&&a.y>b.y)
#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<cmath>
#define maxn 100005
#define inf 1e18
using namespace std;
int n,num[22][maxn],top;
long long f[maxn];
struct node{
long long id,h,w;
}s[maxn],ss[maxn];
struct po{
long long x,y,id;
}h[maxn],zh[maxn];
void merge(int k,int l,int r){
if(l==r){num[k][l]=l;return;}
int mid=l+r>>1;
merge(k+1,l,mid);merge(k+1,mid+1,r);
int li=l,ri=mid+1;
for(int i=l;i<=r;i++){
if(li>mid){
num[k][i]=num[k+1][ri++];continue;
}
if(ri>r){
num[k][i]=num[k+1][li++];continue;
}
int v1=s[num[k+1][li]].h,v2=s[num[k+1][ri]].h;
if(v1<=v2)num[k][i]=num[k+1][li++];
else num[k][i]=num[k+1][ri++];
}
}
po xl(po a,po b){
po t;t.x=a.x-b.x,t.y=a.y-b.y;
return t;
}
long long cj(po a,po b){
return a.x*b.y-a.y*b.x;
}
void tb(int l,int r){
top=0;
for(int i=l;i<=r;i++){
po now;now.x=s[i].h,now.y=f[s[i].id]+s[i].h*s[i].h-s[i].w;now.id=s[i].id;
while(top>1&&cj(xl(zh[top],zh[top-1]),xl(now,zh[top]))<=0)top--;////
zh[++top]=now;
}
}
double getk(po a,po b){
if(a.x==b.x){
if(a.y>b.y)return -inf;
return inf;
}
double xx=a.x-b.x,yy=a.y-b.y;
return yy/xx;
}
void cdq(int k,int l,int r){
if(l==r)return;
int mid=l+r>>1;
cdq(k+1,l,mid);
for(int i=l;i<=mid;i++)s[i]=ss[num[k+1][i]];
tb(l,mid);
for(int i=mid+1;i<=r;i++)s[i]=ss[num[k+1][i]];
int fs=1;
for(int i=mid+1;i<=r;i++){
while(fs<top&&2*(double)s[i].h>getk(zh[fs],zh[fs+1]))fs++;
int j=zh[fs].id,ii=s[i].id;
f[ii]=min(f[ii],
f[j]+(ss[ii].h-ss[j].h)*(ss[ii].h-ss[j].h)+ss[ii-1].w-ss[j].w
);
}
for(int i=mid+1;i<=r;i++)s[i]=ss[i];
cdq(k+1,mid+1,r);
}
int main()
{
cin>>n;
for(int i=1;i<=n;i++)scanf("%lld",&s[i].h);
for(int i=1;i<=n;i++){
scanf("%lld",&s[i].w);
s[i].w+=s[i-1].w;
s[i].id=i;
ss[i]=s[i];
}
merge(1,1,n);
for(int i=2;i<=n;i++)f[i]=inf;
cdq(1,1,n);
cout<<f[n]<<endl;
return 0;
}
ceoi2017 Building Bridges(build)的更多相关文章
- Luogu4655 [CEOI2017]Building Bridges
Luogu4655 [CEOI2017]Building Bridges 有 \(n\) 根柱子依次排列,每根柱子都有一个高度.第 \(i\) 根柱子的高度为 \(h_i\) . 现在想要建造若干座桥 ...
- 题解-[CEOI2017]Building Bridges
[CEOI2017]Building Bridges 有 \(n\) 个桥墩,高 \(h_i\) 重 \(w_i\).连接 \(i\) 和 \(j\) 消耗代价 \((h_i-h_j)^2\),用不到 ...
- 洛谷.4655.[CEOI2017]Building Bridges(DP 斜率优化 CDQ分治)
LOJ 洛谷 \(f_i=s_{i-1}+h_i^2+\min\{f_j-s_j+h_j^2-2h_i2h_j\}\),显然可以斜率优化. \(f_i-s_{i-1}-h_i^2+2h_ih_j=f_ ...
- [CEOI2017]Building Bridges
题目 斜率优化思博题,不想写了 之后就一直\(95\)了,于是靠肮脏的打表 就是更新了一下凸壳上二分斜率的写法,非常清爽好写 就当是挂个板子了 #include<algorithm> #i ...
- loj#2483. 「CEOI2017」Building Bridges 斜率优化 cdq分治
loj#2483. 「CEOI2017」Building Bridges 链接 https://loj.ac/problem/2483 思路 \[f[i]=f[j]+(h[i]-h[j])^2+(su ...
- HDU 4584 Building bridges (水题)
Building bridges Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others) ...
- @loj - 2483@「CEOI2017」Building Bridges
目录 @desription@ @solution@ @accepted code@ @details@ @another solution@ @another code@ @desription@ ...
- loj#2483. 「CEOI2017」Building Bridges(dp cdq 凸包)
题意 题目链接 Sol \[f[i], f[j] + (h[i] - h[j])^2 + (w[i - 1] - w[j]))\] 然后直接套路斜率优化,发现\(k, x\)都不单调 写个cdq就过了 ...
- LOJ 2483: 洛谷 P4655: 「CEOI2017」Building Bridges
题目传送门:LOJ #2483. 题意简述: 有 \(n\) 个数,每个数有高度 \(h_i\) 和价格 \(w_i\) 两个属性. 你可以花费 \(w_i\) 的代价移除第 \(i\) 个数(不能移 ...
随机推荐
- 多GPU设备处理点积示例
多GPU设备处理点积示例,项目打包下载 /* * Copyright 1993-2010 NVIDIA Corporation. All rights reserved. * * NVIDIA Cor ...
- 表格和网页ico图标
表格: 表格格式: <table> <tr> 表格的行 <th >表头</th> <th>表头 </th> </tr> ...
- nodejs 爬虫
参考了各位大大的,然后自己写了个爬虫 用到的modules:utils.js --- moment module_url.js var http = require("http ...
- head与body(新手向)
网页文档包含了页头(head)与主体(body) 页头 -是对该网页文档进行描绘的主体信息. -至少含有title与meta. meta描述网页的特征,比如字符编码,平时广泛用的utf-8.且meta ...
- idea右侧的工具栏不见,包括maven以及其他
通用,设置后右侧工具栏可见 可以通过view-->windows tool看到maven的
- mysql查看版本,编码
SELECT * FROM gps_gpsinfo t WHERE t.reportdate < TO_DATE('2019/4/28 10:05:07', 'yyyy-MM-dd hh24:m ...
- IDEA Tomcat 日志和输出中文乱码问题
说明:该方法是在网上查找的其他方法均无效的情况下自己摸索出的设置.既然别人有效的设置在我这里无效,那么以下设置自然有可能无效.建议综合多个搜索结果进行尝试. 仅需要进行两处设置 1. 更改 IDEA ...
- unix环境高级编程一书中部分错误处理函数
#include <unistd.h> #include <errno.h> #include <string.h> #include <stdio.h> ...
- split 分割压缩文件
1.普通tar压缩命令 tar -zcvf cm-11.tar.gz cm-11 //将cm-11文件夹压缩成cm-11.tar.gz 2.压缩后的文件太大,需要将cm-11.tar.gz分割成N个指 ...
- 16.1-Jenkins持续集成01—Jenkins服务搭建和部署
分类: Linux架构篇 一.介绍Jenkins 1.Jenkins概念 Jenkins是一个功能强大的应用程序,允许持续集成和持续交付项目,无论用的是什么平台.这是一个免费的源代码,可以处理任何 ...