Why containers? Why should we care? 新旧容器的对比
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
The Old Way to deploy applications was to install the applications on a host using the operating system package manager. This had the disadvantage of entangling the applications’ executables, configuration, libraries, and lifecycles with each other and with the host OS. One could build immutable virtual-machine images in order to achieve predictable rollouts and rollbacks, but VMs are heavyweight and non-portable.
The New Way is to deploy containers based on operating-system-level virtualization rather than hardware virtualization. These containers are isolated from each other and from the host: they have their own filesystems, they can’t see each others’ processes, and their computational resource usage can be bounded. They are easier to build than VMs, and because they are decoupled from the underlying infrastructure and from the host filesystem, they are portable across clouds and OS distributions.
Because containers are small and fast, one application can be packed in each container image. This one-to-one application-to-image relationship unlocks the full benefits of containers. With containers, immutable container images can be created at build/release time rather than deployment time, since each application doesn’t need to be composed with the rest of the application stack, nor married to the production infrastructure environment. Generating container images at build/release time enables a consistent environment to be carried from development into production. Similarly, containers are vastly more transparent than VMs, which facilitates monitoring and management. This is especially true when the containers’ process lifecycles are managed by the infrastructure rather than hidden by a process supervisor inside the container. Finally, with a single application per container, managing the containers becomes tantamount to managing deployment of the application.
Summary of container benefits:
- Agile application creation and deployment: Increased ease and efficiency of container image creation compared to VM image use.
- Continuous development, integration, and deployment: Provides for reliable and frequent container image build and deployment with quick and easy rollbacks (due to image immutability).
- Dev and Ops separation of concerns: Create application container images at build/release time rather than deployment time, thereby decoupling applications from infrastructure.
- Environmental consistency across development, testing, and production: Runs the same on a laptop as it does in the cloud.
- Cloud and OS distribution portability: Runs on Ubuntu, RHEL, CoreOS, on-prem, Google Container Engine, and anywhere else.
- Application-centric management: Raises the level of abstraction from running an OS on virtual hardware to run an application on an OS using logical resources.
- Loosely coupled, distributed, elastic, liberated micro-services: Applications are broken into smaller, independent pieces and can be deployed and managed dynamically – not a fat monolithic stack running on one big single-purpose machine.
- Resource isolation: Predictable application performance.
- Resource utilization: High efficiency and density.
https://aucouranton.com/2014/06/13/linux-containers-parallels-lxc-openvz-docker-and-more/
A container (Linux Container) at its core is an allocation, portioning, and assignment of host (compute) resources such as CPU Shares, Network I/O, Bandwidth, Block I/O, and Memory (RAM) so that kernel level constructs may jail-off, isolate or “contain” these protected resources so that specific running services (processes) and namespaces may solely utilize them without interfering with the rest of the system. These processes could be lightweight Linux hosts based on a Linux image, multiple web severs and applications, a single subsystem like a database backend, to a single process such as ‘echo “Hello”’ with little to no overhead.
Commonly known as “operating system-level virtualization” or “OS Virtual Environments” containers differ from hypervisor level virtualization. The main difference is that the container model eliminates the hypervisor layer, redundant OS kernels, binaries, and libraries needed to typically run workloads in a VM.
基于操作系统而非硬件 based on operating-system-level virtualization rather than hardware virtualization
独立文件系统filesystems,进程互补可见 processes
Why containers? Why should we care? 新旧容器的对比的更多相关文章
- Arcgis API For IOS扩展AGSDynamicLayer新旧版API对比
AGSDynamicLayer(ForSubclassEyesOnly) Category Reference Description This category organizes the meth ...
- Android新旧版本Notification
Android新旧版本Notification 在notification.setLatestEventInfo() 过时了 以前: NotificationManager mn = (Notific ...
- Matlab神经网络函数newff()新旧用法差异
摘要 在Matlab R2010a版中,如果要创建一个具有两个隐含层.且神经元数分别为5.3的前向BP网络,使用旧的语法可以这样写: net1 = newff(minmax(P), [5 3 1]); ...
- [ACM_数学] Taxi Fare [新旧出租车费差 水 分段函数]
Description Last September, Hangzhou raised the taxi fares. The original flag-down fare in Hangzhou ...
- Flex布局新旧混合写法详解(兼容微信)
原文链接:https://www.usblog.cc/blog/post/justzhl/Flex布局新旧混合写法详解(兼容微信) flex是个非常好用的属性,如果说有什么可以完全代替 float 和 ...
- 浅谈 angular新旧版本问题
一直在学习angularJs,之前用的版本比较老,前些天更新了一下angularJs的版本,然后发现了一些问题,希望和大家分享一下. 在老的版本里控制器直接用函数定义就可以 比如: 在angularJ ...
- css弹性盒子新旧兼容
前言:本篇随笔是对弹性盒子有了解的人来写的这篇文章,具体属性产生的效果这里不做说明,基础的东西去查文档.这里只是总结. 时至今日,css3的flex弹性盒子在移动端基本上都是支持的,但不排除有些些低版 ...
- spring加载配置新旧方式对比
老方式 1.首先要配置配置文件,如beans.xml,内容如下: <?xml version="1.0" encoding="UTF-8"?> &l ...
- Flex布局新旧混合写法详解
flex是个非常好用的属性,如果说有什么可以完全代替 float 和 position ,那么肯定是非它莫属了(虽然现在还有很多不支持 flex 的浏览器).然而国内很多浏览器对 Flex 的支持都不 ...
随机推荐
- 快充 IC BQ25896 如何判斷 手機插著 adapter 充電器時,adapter Iout 大於限制,adapter Vout 小於 限制,導致 battery 不但沒充電且還需放電。
若電池在 放電時,ICHGR 為0. 若電池在 充電時,ICHGR有變化. 下面有寫到 charge current 所以不是 discharge current 狀況: ...
- LeetCode OJ--Rotate Image
http://oj.leetcode.com/problems/rotate-image/ 将矩阵顺时针旋转90度.要求为原地算法. 注意对输入的测试,矩阵为空,长度为1,为2时…… #include ...
- js-利用插件qrcode.min.js,前端实时生成二维码
qrcode.min.js <script type="text/javascript" src="js/jquery.min.js"></s ...
- codeforces gym 100825 D Rings
这题果然就是个暴力题.... 看每个T的四个方向,有'.',或者在边界上就填1 不然就填四个方向上最小的那个数再加1 然而写wa了几发,有点蠢... #include <bits/stdc++. ...
- HDU 5937 Equation(DFS+剪枝)
题目链接 Equation 给定1-9这9个数字各自的卡片数,求能构成形如$i + j = k$的等式个数 等式中$i,j,k$必须都为个位数 若两个等式中$i,j,k$不完全相等,则这两个等式为不同 ...
- jenkins的Pipeline代码流水线管理
1.新建一个pipline任务 2.自写一个简单的pipline脚本 a.Pipeline的脚本语法在Pipeline Syntax中,片段生成器,示例步骤中选择builf:Build a job b ...
- 随笔:Golang 时间Time
先了解下time类型: type Time struct { // sec gives the number of seconds elapsed since // January 1, year 1 ...
- [转] DataSet的的几种遍历
1. 多表多行多列的情况 foreach (DataTable dt in YourDataset.Tables) //遍历所有的datatable { foreach (DataRow dr in ...
- 【spring boot】13.在spring boot下使用多线程
使用场景: 方法处理到某一步,需要将信息交给另一个线程去处理!! =================================================================== ...
- 5.【nuxt起步】-swiper组件
接下来是一个比较常用,也比较重要的组件 swiper,可以自行搜索 vue swiper,有很多开源组件,我这里就复用之前一个熟悉的, 1.新建component/banner.vue 刷新报错: 要 ...