【BZOJ3837】[Pa2013]Filary 随机化神题
【BZOJ3837】[Pa2013]Filary
Description
Input
Output
Sample Input
7 4 10 8 7 1
Sample Output
题解:我们随机选取一个数x,然后将所有数与它作差,那么只需要找出k个差值使得他们的gcd>1即可。我们可以将所有差值分解质因数,然后统计每个质因数出现的次数,再加上与x相等的数的个数就是k。统计k个时候顺便记录一下这些数的gcd即可。
本题还有一个特殊性质,当m=2时,k一定>n/2。所以我们期望随机log次就能得到一个选中的数了。(实际情况根据随机的种子而定,一开始自己设的种子要么奇慢无比,要么WA,后来把种子去掉,随机4次就行了。)
#include <cstdio>
#include <iostream>
#include <cstring>
#include <cstdlib>
using namespace std;
const int maxn=100010;
int n,x,nk,nm,k,m,num;
int pri[1000010],lp[10000010],s[1000010],g[1000010];
bool np[10000010];
int v[maxn],c[maxn];
int rd()
{
int ret=0; char gc=getchar();
while(gc<'0'||gc>'9') gc=getchar();
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret;
}
int gcd(int a,int b)
{
return (!b)?a:gcd(b,a%b);
}
int main()
{
int i,j,T;
for(i=2;i<=10000000;i++)
{
if(!np[i]) pri[++num]=i,lp[i]=num;
for(j=1;j<=num&&i*pri[j]<=10000000;j++)
{
np[i*pri[j]]=1,lp[i*pri[j]]=j;
if(i%pri[j]==0) break;
}
}
n=rd();
for(i=1;i<=n;i++) v[i]=rd();
for(T=1;T<=4;T++)
{
x=v[rand()%n+1];
for(s[0]=0,i=1;i<=n;i++)
{
c[i]=abs(v[i]-x);
if(!c[i]) s[0]++;
}
nk=0;
for(i=1;i<=n;i++)
{
int t=c[i];
while(t&&t!=1)
{
int tmp=lp[t];
s[tmp]++,g[tmp]=gcd(g[tmp],c[i]);
if(nk<s[tmp]+s[0]) nk=s[tmp]+s[0],nm=0;
if(nk==s[tmp]+s[0]) nm=max(nm,g[tmp]);
while(t%pri[tmp]==0) t/=pri[tmp];
}
}
if(nk>k) k=nk,m=0;
if(nk==k) m=max(m,nm);
for(i=1;i<=n;i++)
{
int t=c[i];
while(t&&t!=1)
{
int tmp=lp[t];
s[tmp]=g[tmp]=0;
while(t%pri[tmp]==0) t/=pri[tmp];
}
}
}
printf("%d %d",k,m);
return 0;
}
【BZOJ3837】[Pa2013]Filary 随机化神题的更多相关文章
- Bzoj3837 [Pa2013]Filary(随机化)
题面 权限题 题解 这题有一个很好的性质,就是一定有$k>\frac n2$.接着考虑怎么做. 我们随机选取一个数$x$,然后将所有数与它作差,那么只需要找出$k$个差值使得他们的最大公因数大于 ...
- BZOJ3837 : [Pa2013]Filary
当m取2时,k至少为$\frac{n}{2}$ 所以在最优解中每个数被选中的概率至少为$\frac{1}{2}$ 每次随机选取一个位置i,计算出其它数与$a_i$的差值,将差值分解质因数 所有质因数中 ...
- 【BZOJ3837】[PA2013]Filary
[BZOJ3837][PA2013]Filary 题面 darkbzoj 题解 考虑到模数为\(2\)时答案至少为\(\frac n2\),这是我们答案的下界. 那么我们对于任意的一个数,它们答案集合 ...
- bzoj 3837 (随机过题法了解一下)
3837: [Pa2013]Filary Time Limit: 60 Sec Memory Limit: 256 MBSubmit: 395 Solved: 74[Submit][Status] ...
- B4010 菜肴制作 拓扑排序(附随机跳题代码)
今天写了一个自己的随机跳题小程序,第一次试发现跳的全是不可做题,但是在周围我一眼看见了这个题,不能说一眼看出来,但是也是比较有思路,所以就做他了! 做得比较顺利,做完之后美滋滋,突然发现样例第三组过不 ...
- ppt VBA 实现随机抽题
目录 目标/最终效果 关于VBA VBA简单示例 检查环境 步骤 VBA实现随机抽题 todo challenge 目标/最终效果 目标是制作一个ppt,实现随机抽题,具体描述: 第一页幻灯片中:点击 ...
- bzoj 3837 pa2013 Filary
bzoj 先搞第一问.考虑简单情况,如果\(m=2\),那么一定有个剩余类大小\(\ge \lceil\frac{n}{2}\rceil\),同时这也是答案下界 然后我们每次随机选出一个数\(a_i\ ...
- 软件工程课程作业(一)—20道随机四则运算题(C++)
一.编程思想: 1.定义所需要变量2.设置数组,存储运算符,3.通过随机函数random(0,100)找出运算数,random(0,4)找出运算符4.通过输出显示运算式. 二.源代码: //2016 ...
- [BZOJ5361][Lydsy1805月赛]对称数
bzoj Description 给你一棵树,每个点有一个编号\(a_i\).\(Q\)组询问,每次问一条路径上最小的出现了偶数次的编号是多少(包括零次). 多组数据,\(T\le10,n,Q,a_i ...
随机推荐
- JavaWeb学习总结(十七)——JSP中的九个内置对象(转)
一.JSP运行原理 每个JSP 页面在第一次被访问时,WEB容器都会把请求交给JSP引擎(即一个Java程序)去处理.JSP引擎先将JSP翻译成一个_jspServlet(实质上也是一个servlet ...
- UML系列,使用UML实现GOF Design patterns,常用模式类图解读
1.单例:Singleton, DirectedAssociation
- 【Linux】多进程与多线程之间的区别
http://blog.csdn.net/byrsongqq/article/details/6339240 网络编程中设计并发服务器,使用多进程与多线程 ,请问有什么区别? 答案一: 1,进程:子 ...
- IOS 改变Navigation的返回按钮
两个办法: 1, 手动为每一个UIViewController添加navigationItem的leftButton的设置代码 2,为UINavigationController实现delegate, ...
- HDU 1754:I Hate It(线段树-单点更新)
题意: 1~N这些人有一些分数,之后有M条操作.要求支持两种操作:更新其中某个人的成绩,查询[A,B]区间内的人的最高成绩. ( 0<N<=200000,0<M<5000 ) ...
- zoj 2760(网络流+floyed)
How Many Shortest Path Time Limit: 10 Seconds Memory Limit: 32768 KB Given a weighted directed ...
- LeetCode OJ--Binary Tree Level Order Traversal
http://oj.leetcode.com/problems/binary-tree-level-order-traversal/ 树的层序遍历,使用队列 由于树不是满的,还要分出每一层来,刚开始给 ...
- LeetCode OJ——Plus One
http://oj.leetcode.com/problems/plus-one/ 进位加法 #include <iostream> #include <vector> usi ...
- AC日记——Sign on Fence Codeforces 484e
E. Sign on Fence time limit per test 4 seconds memory limit per test 256 megabytes input standard in ...
- kswapd0 进程 设置 swap
kswapd0是虚拟内存管理中,负责换页,说白了就是你的物理内存不够用了 现在的服务器,一般内存都很高,所有很少使用 swap 分区了 这时候考虑的两种处理办法 加大物理内存 或者 增加swap分 ...