Python —— sklearn.feature_selection模块

sklearn.feature_selection模块的作用是feature selection,而不是feature extraction。
 
Univariate feature selection:单变量的特征选择
单变量特征选择的原理是分别单独的计算每个变量的某个统计指标,根据该指标来判断哪些指标重要。剔除那些不重要的指标。
 
sklearn.feature_selection模块中主要有以下几个方法:
SelectKBest和SelectPercentile比较相似,前者选择排名排在前n个的变量,后者选择排名排在前n%的变量。而他们通过什么指标来给变量排名呢?这需要二外的指定。
对于regression问题,可以使用f_regression指标。对于classification问题,可以使用chi2或者f_classif变量。
  • 回归:

f_regression:相关系数,计算每个变量与目标变量的相关系数,然后计算出F值和P值;

  • 分类 :

chi2:卡方检验;
f_classif:方差分析,计算方差分析(ANOVA)的F值 (组间均方 / 组内均方);

使用的例子:
 from sklearn.feature_selection import SelectPercentile, f_classif
selector = SelectPercentile(f_classif, percentile=10)
还有其他的几个方法,似乎是使用其他的统计指标来选择变量:using common univariate statistical tests for each feature: false positive rate SelectFpr, false discovery rate SelectFdr, or family wise error SelectFwe.
 
文档中说,如果是使用稀疏矩阵,只有chi2指标可用,其他的都必须转变成dense matrix。但是我实际使用中发现f_classif也是可以使用稀疏矩阵的。
 
Recursive feature elimination:循环特征选择
不单独的检验某个变量的价值,而是将其聚集在一起检验。它的基本思想是,对于一个数量为d的feature的集合,他的所有的子集的个数是2的d次方减1(包含空集)。指定一个外部的学习算法,比如SVM之类的。通过该算法计算所有子集的validation error。选择error最小的那个子集作为所挑选的特征。
 
这个算法相当的暴力啊。由以下两个方法实现:sklearn.feature_selection.RFE,sklearn.feature_selection.RFECV
 
L1-based feature selection:
该思路的原理是:在linear regression模型中,有的时候会得到sparse solution。意思是说很多变量前面的系数都等于0或者接近于0。这说明这些变量不重要,那么可以将这些变量去除。
 
Tree-based feature selection:决策树特征选择
基于决策树算法做出特征选择

Python —— sklearn.feature_selection模块的更多相关文章

  1. python sklearn.cross_validation 模块导入失败

    参考链接: https://blog.csdn.net/Jae_Peng/article/details/79277920 解决办法: 原来在 cross_validation 里面的函数都放在 mo ...

  2. [Python]-sklearn.model_selection模块-处理数据集

    拆分数据集train&test from sklearn.model_selection import train_test_split 可以按比例拆分数据集,分为train和test x_t ...

  3. Python scikit-learn机器学习工具包学习笔记:feature_selection模块

    sklearn.feature_selection模块的作用是feature selection,而不是feature extraction.   Univariate feature selecti ...

  4. 特征选取1-from sklearn.feature_selection import SelectKBest

    sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003& ...

  5. Python Sklearn.metrics 简介及应用示例

    Python Sklearn.metrics 简介及应用示例 利用Python进行各种机器学习算法的实现时,经常会用到sklearn(scikit-learn)这个模块/库. 无论利用机器学习算法进行 ...

  6. 用python+sklearn(机器学习)实现天气预报数据 模型和使用

    用python+sklearn机器学习实现天气预报 模型和使用 项目地址 系列教程 0.前言 1.建立模型 a.准备 引入所需要的头文件 选择模型 选择评估方法 获取数据集 b.建立模型 c.获取模型 ...

  7. python之platform模块

    python之platform模块 ^_^第三个模块从天而降喽!! 函数列表 platform.system() 获取操作系统类型,windows.linux等 platform.platform() ...

  8. python之OS模块详解

    python之OS模块详解 ^_^,步入第二个模块世界----->OS 常见函数列表 os.sep:取代操作系统特定的路径分隔符 os.name:指示你正在使用的工作平台.比如对于Windows ...

  9. python之sys模块详解

    python之sys模块详解 sys模块功能多,我们这里介绍一些比较实用的功能,相信你会喜欢的,和我一起走进python的模块吧! sys模块的常见函数列表 sys.argv: 实现从程序外部向程序传 ...

随机推荐

  1. Div实现水平垂直居中

    在实际应用中很多地方不仅要求实现元素的水平居中或者垂直居中效果,还可能会在水平方向和垂直方向上都要实现居中效果,下面就简单介绍几种元素水平垂直居中的方法(注:不同的方法会存在一些优缺点以及兼容性问题) ...

  2. 学习Shell编程

    目录 1 什么是Shell 2 Linux的启动过程 3 怎样编写一个Shell脚本 4 Shell脚本的执行方式 5 内建命令和外部命令的区别 6 管道和重定向 7 变量赋值 8 环境变量配置文件 ...

  3. java线程基础巩固---ThreadGroup API学习

    ThreadGroup初识: 这次来学习一个新的线程概念---线程组(ThreadGroup),首先从JDK文档中对它进行一个大致的了解,如下: 下面开始用代码来进行说明,对于一个线程来说如果没有指定 ...

  4. 通过LVM备份mysql数据库脚本

    #!/bin/bash #******************************************************************** #encoding -*-utf8- ...

  5. kettle 数据抽取时会出现 无法插入NULL

    kettle 数据抽取时会出现 无法插入NULL,其实是空字符串,原因是kettle默认不区分空字符串和NULL. 解决办法: 修改kettle.properties 文件:

  6. SpringBoot项目中使用Bootstrap 的CSS、JS资源

    首先 需要在 application.properties 文件中添加这句 spring.mvc.static-path-pattern=/** 不然是使用不了的 还有一种办法就是 使用bootstr ...

  7. ubuntu nginx 启动多个Django项目

    1.将 /etc/nginx/sites-enabled/ 目录下的nginx默认配置文件default,重命名,例如:default1 2.给每个Django项目添加nginx.conf配置文件,建 ...

  8. 获取DataFrame列名的3种方法

    df= pd.DataFrame({'a': range(10, 20), 'b': range(20, 30)}) df 1.链表推倒式 [column for column in df][a,b] ...

  9. pandas中DataFrame和Series的数据去重

    在SQL语言中去重是一件相当简单的事情,面对一个表(也可以称之为DataFrame)我们对数据进行去重只需要GROUP BY 就好. select custId,applyNo from tmp.on ...

  10. BZOJ 3924 / Luogu P3345 [ZJOI2015]幻想乡战略游戏 (动态点分治/点分树)

    题意 树的结构不变,每个点有点权,每一条边有边权,有修改点权的操作,设xxx为树中一点.求∑idist(x,i)∗a[i]\sum_idist(x,i)*a[i]i∑​dist(x,i)∗a[i]的最 ...