费马小定理:假如p是质数,且gcd(a,p)=1,那么 a^(p-1)≡1(mod p)

证明(copy的百度百科,加点自己的解释)

引理1.
  若a,b,c为任意3个整数,m为正整数,且(m,c)=1,则当a·c≡b·c(mod m)时,有a≡b(mod m)。
  证明:a·c≡b·c(mod m)可得ac–bc≡0(mod m)可得(a-b)·c≡0(mod m)。
     因为(m,c)=1即m,c互质,c可以约去(       x=a-b,  x*c=k*m(k∈Z),  (c,m)=1,  ∴c不提供m的因子,  ∴ x=k*m(k∈Z)         ),
     a– b≡0(mod m)可得a≡b(mod m)。
引理2.
  设m是一个整数且m>1,b是一个整数且(m,b)=1。
  如果a[1],a[2],a[3],a[4],…a[m]是模m的一个完全剩余系,则b·a[1],b·a[2],b·a[3],b·a[4],…b·a[m]也构成模m的一个完全剩余系。
  证明:(反证)
  若存在2个整数b·a[i]和b·a[j]同余即b·a[i]≡b·a[j](mod m)..(i>=1 && j>=1),
  根据引理1则有a[i]≡a[j](mod m)。根据完全剩余系的定义可知这是不可能的,
  因此不存在2个整数 b·a[i]和b·a[j]同余。所以b·a[1],b·a[2],b·a[3],b·a[4],…b·a[m]构成模m的一个完全剩余系。
构造素数 p  的完全剩余系 
因为  ,由引理2可得 也是p的一个完全剩余系
由完全剩余系的性质,
即     
易知   ,
同余式两边可约去

  

( 如引理1 ),

得到   这样就证明了费马小定理。 
 
 

费马小定理证明 (copy的,自己捋清楚)的更多相关文章

  1. 费马小定理&欧拉定理

    在p是素数的情况下,对任意整数x都有xp≡x(mod p).这个定理被称作费马小定理其中如果x无法被p整除,我们有xp-1≡1(mod p).利用这条性质,在p是素数的情况下,就很容易求出一个数的逆元 ...

  2. 【初等数论】费马小定理&欧拉定理&扩展欧拉定理(暂不含证明)

    (不会证明--以后再说) 费马小定理 对于任意\(a,p \in N_+\),有 \(a^{p-1} \equiv 1\pmod {p}\) 推论: \(a^{-1} \equiv a^{p-2} \ ...

  3. 逆元 exgcd 费马小定理 中国剩余定理的理解和证明

    一.除法取模逆元 如果我们要通过一个前面取过模的式子递推出其他要取模的式子,而递推式里又存在除法 那么一个很尴尬的事情出现了,假如a[i-1]=100%31=7 a[i]=(a[i-1]/2)%31 ...

  4. 读 CSI讲义 费马小定理

    费马小定理 最近在上计算机安全学选修课.. 读老师博客..现在当是写阅读笔记吧. 这里贴出老师的简书建议先看看链接先..毕竟我这些东西只是搞笑一下的.. 遵循一下这个原则… 观察 找规律 求证 首先是 ...

  5. 数论初步(费马小定理) - Happy 2004

    Description Consider a positive integer X,and let S be the sum of all positive integer divisors of 2 ...

  6. HDU4704+费马小定理

    费马小定理题意:求s1+s2+s3+...+sn;si表示n划分i个数的n的划分的个数,如n=4,则s1=1,s2=3    利用隔板定理可知,就是求(2^n-1)%mod-----Y    现在已知 ...

  7. HDU 4704 Sum(隔板原理+组合数求和公式+费马小定理+快速幂)

    题目传送:http://acm.hdu.edu.cn/showproblem.php?pid=4704 Problem Description   Sample Input 2 Sample Outp ...

  8. 51nod1119(除法取模/费马小定理求组合数)

    题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1119 题意:中文题诶- 思路:这题数据比较大直接暴力肯定是不 ...

  9. HDU4549 M斐波那契数列 —— 斐波那契、费马小定理、矩阵快速幂

    题目链接:https://vjudge.net/problem/HDU-4549 M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others)    Memory Li ...

随机推荐

  1. 爬虫时安装的newspaper 新闻包

    Newspaper3k: Article scraping & curation 首先在命令行安装 newspaper pip install Newspaper3k 然后导入包进行写代码 f ...

  2. PHP扩展之 Imagick安装

    最近的PHP项目中,需要用到切图和缩图的效果,在本地windows开发环境,安装过程遇到好多问题,在此与大家分享. php官网里,一大群老外也看不懂这玩意怎么装,主要原因在于,php版本庞杂,还有x8 ...

  3. javascript立体学习指南

    javascript立体学习指南第一章:首先了解javascript 首先,什么是javascript? JavaStrip出生于1995年,是一种文本脚本语言,成都装修公司是一种动态的.弱类型的.基 ...

  4. 【Git的基本操作五】比较文件差异

    比较文件差异 1. git diff [文件名] 将工作区中的文件和暂存区对应文件进行比较 例:git diff test.txt 2. git diff [本地库中文件历史记录(指针)] [文件名] ...

  5. 数据集:Introduction to Econometrics by Stock&Watson

    James H. Stock and Mark W. Watson, Introduction to Econometrics: data sets 詹姆斯·H·斯托克 马克·W·沃森. 计量经济学. ...

  6. CDH6.1.0新增主机资源

    在CDH 6.1.0 上增加主机 一 客户端配置 1.1 JAVA 配置 1.2 关闭selinux以及防火墙 1.3 将服务端的agent包打包然后拷贝到客户端 然后解压 启动(也可以rpm安装) ...

  7. WLW模板插件Text Templat的应用举例

    WLW的模板插件:WLWTextTemplates 安装之后,如下图所示: 点击这个按键之后,出现下图: 按上图提示点击"Add new Template",出现下图:   举个例 ...

  8. Delphi MSComm控件事件的介绍

  9. 蓝牙App漏洞系列分析之一CVE-2017-0601

    蓝牙App漏洞系列分析之一CVE-2017-0601 0x01 概要 2017年5月的 Android 安全公告修复了我们提交的一个蓝牙提权中危漏洞,这个漏洞尽管简单,但比较有意思,能够使本地恶意 A ...

  10. 【wifi移植 3】开发板wifi自动获取IP

    内核版本:3.4.61 1. 配置内核,支持DHCP ~/kernel$ make menuconfig [*] Networking support  ---> Networking opti ...