做KD_tree的入门题。

问题就是求出任意一个点距其他点的最大曼哈顿距离和最小曼哈顿距离差,然后对其取min即可。

这个东西就是KD_tree可以轻松解决的了。

下面总结一下做KD_tree(不带修)的心得。

KD_tree本质上是一颗搜索树,实际上将所有可能的决策集合不重不漏的划分了出来,而我们要做的就是剪枝。

其实建KD_tree的过程就是将一个平面划分成若干小块,即子问题,来方便我们查找,一般的KD_tree需要以下内容:

首先左右儿子是必备的。然后注意一个非常重要的事情,我们划分的时候是有基准的,我们建立KD_tree的时候,每一个节点都包含着一个真实的点,我称之为基准点(BP),我们递归进行的时候就是利用BP来更新ans。接着就是剪枝用的组件,在本题中,我们维护矩形的4个边界,只有我们用估价函数算出的值比较优秀的时候我们才向下进行,因为估价函数考虑的是最优情况,如果这种可能性很小的最优情况都不满足,那么别的条件就更没用了,我们不需要进入这颗子树。

接着一个New函数是KD_tree建立的基础,我们将上述组件全部赋好初值,(因为野针确实可pia)。

pushup函数就如同线段树一般,我们维护的信息大多可以“区间”合并。

cal估价函数是KD_tree的灵魂,否则KD_tree有时就是大暴力(其实加了剪枝也像暴力)。

接着开始快乐建树。

r>l就return,开点,换now,nth_element找中位,维护自身信息,递归左右儿子,pushup,建完收工。

然后进行快乐查询。

空指针,return,用当前节点的BP尝试更新答案,求出左右儿子估价值,先跑更优的,因为跑完它以后那个次优的可能就不用跑了。

完成。

#include<bits/stdc++.h>
#define null NULL
using namespace std;
const int N=;
const int inf=0x7fffffff;
inline int read(){
int sum(),f();char x=getchar();
while(x<''||x>''){
if(x=='-') f=-;
x=getchar();
}while(x>=''&&x<=''){
sum=sum*+x-'';
x=getchar();
}return sum*f;
}
inline int abs_(int x){
return x<?-x:x;
}
inline int min_(int x,int y){
return x<y?x:y;
}
inline int max_(int x,int y){
return x>y?x:y;
}
int now,n,ans=inf,tot,Maxans,Minans;
struct node{
int x[];//x,y坐标
}poi[N];
bool comp(node a,node b){
return a.x[now]<b.x[now];
}
inline int Mhtdis(node a,node b){
return abs_(a.x[]-b.x[])+abs_(a.x[]-b.x[]);
}
struct Kd_tree{
Kd_tree *ch[];
node BP;
int minv[],maxv[];
inline void New(node a){
BP=a;
minv[]=maxv[]=a.x[];
minv[]=maxv[]=a.x[];
ch[]=ch[]=null;
}
inline void pushup(){
if(ch[]){
minv[]=min_(minv[],ch[]->minv[]);
maxv[]=max_(maxv[],ch[]->maxv[]);
minv[]=min_(minv[],ch[]->minv[]);
maxv[]=max_(maxv[],ch[]->maxv[]);
}
if(ch[]){
minv[]=min_(minv[],ch[]->minv[]);
maxv[]=max_(maxv[],ch[]->maxv[]);
minv[]=min_(minv[],ch[]->minv[]);
maxv[]=max_(maxv[],ch[]->maxv[]);
}
}
inline int cal_min(node a){
return max_(minv[]-a.x[],)+max_(a.x[]-maxv[],)
+max_(minv[]-a.x[],)+max_(a.x[]-maxv[],);
}
inline int cal_max(node a){
return max_(abs_(a.x[]-minv[]),abs_(a.x[]-maxv[]))
+max_(abs_(a.x[]-minv[]),abs_(a.x[]-maxv[]));
}
}*root,pool[N];
void build(Kd_tree *&p,int l,int r,int d){
if(l>r) return ;
p=pool+(tot++); now=d;
int mid=l+r>>;
nth_element(poi+l,poi+mid,poi+r,comp);
p->New(poi[mid]);
build(p->ch[],l,mid-,d^);
build(p->ch[],mid+,r,d^);
p->pushup();
}
void query_max(Kd_tree *p,node rec){
if(p==null) return ;
Maxans=max_(Mhtdis(p->BP,rec),Maxans);
int dis[]={p->ch[]==null?:p->ch[]->cal_max(rec),
p->ch[]==null?:p->ch[]->cal_max(rec)};
int first=dis[]>dis[]?:;
if(dis[first]>Maxans) query_max(p->ch[first],rec);
if(dis[first^]>Maxans) query_max(p->ch[first^],rec);
}
void query_min(Kd_tree *p,node rec){
if(p==null) return ;
if(Mhtdis(p->BP,rec))
Minans=min_(Mhtdis(p->BP,rec),Minans);
int dis[]={p->ch[]==null?inf:p->ch[]->cal_min(rec),
p->ch[]==null?inf:p->ch[]->cal_min(rec)};
int first=dis[]<dis[]?:;
if(dis[first]<Minans) query_min(p->ch[first],rec);
if(dis[first^]<Minans) query_min(p->ch[first^],rec);
}
inline int query_max(node rec){
Maxans=;
query_max(root,rec);
return Maxans;
}
inline int query_min(node rec){
Minans=inf;
query_min(root,rec);
return Minans;
}
int main(){
n=read();
for(int i=;i<=n;++i){
poi[i].x[]=read();
poi[i].x[]=read();
}
build(root,,n,);
for(int i=;i<=n;++i)
ans=min_(ans,query_max(poi[i])-query_min(poi[i]));
printf("%d",ans);
return ;
}

(论循环展开的优越性)

BZOJ1941Hide and Seek的更多相关文章

  1. 【SDOI2010题集整合】BZOJ1922~1927&1941&1951&1952&1972&1974&1975

    BZOJ1922大陆争霸 思路:带限制的单源最短路 限制每个点的条件有二,路程和最早能进入的时间,那么对两个值一起限制跑最短路,显然想要访问一个点最少满足max(dis,time) 那么每次把相连的点 ...

  2. 【Android】 修复ijkPlayer进行m3u8 hls流播放时seek进度条拖动不准确的问题

    项目中使用的播放器是ijkPlayer,发现播放切片特点的hls流(m3u8格式的视频)拖动seekBar的时候会莫名的跳转或者seek不到准确的位置,发现网友也遇到了同样的问题,ijk的开发者也说明 ...

  3. POJ 2752 Seek the Name, Seek the Fame [kmp]

    Seek the Name, Seek the Fame Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 17898   Ac ...

  4. Index Seek和Index Scan的区别

    Index Seek是Sql Server执行查询语句时利用建立的索引进行查找,索引是B树结构,Sql Server先查找索引树的根节点,一级一级向下查找,在查找到相应叶子节点后,取出叶子节点的数据. ...

  5. 【BZOJ-1941】Hide and Seek KD-Tree

    1941: [Sdoi2010]Hide and Seek Time Limit: 16 Sec  Memory Limit: 162 MBSubmit: 830  Solved: 455[Submi ...

  6. PYTHON seek()tell()语句

    print(f.tell()) # 显示当前位置 f.seek(0) #回到某一起点

  7. stream的seek方法实例

    using (FileStream outStream = new FileStream(@"D:\12.txt", FileMode.Open)) { using (FileSt ...

  8. ai seek

    原文地址链接:http://gamedevelopment.tutsplus.com/tutorials/understanding-steering-behaviors-seek--gamedev- ...

  9. seek指针大文件上传

    package mainimport (    // "bufio"    "fmt"    "github.com/axgle/mahonia&qu ...

随机推荐

  1. werkzeug/routing.py-Map()源码解析

    Map类主要用来存储所有的url规则和一些配置参数的.其中有一些配置的值只存储在Map实例里,因为这些值影响着所有的规则,还有一些其他的默认规则可以被重写. 通过之前分析的add_url_rule源码 ...

  2. VBA数组(十四)

    我们都知道,一个变量是一个存储值的容器. 有时,开发人员希望一次可以在一个变量中保存多个值. 当一系列值存储在单个变量中时,则称为数组变量. 数组声明 数组声明的方式与声明变量相同,只是数组变量的声明 ...

  3. python使用Pyinstaller打包

    一.前言 python文件打包,将.py文件转化成.exe文件(windows平台),可以使用Pyinstaller来打包 Pyinstaller可以在全平台下使用,但是请注意打包生成的文件不能在全平 ...

  4. node.js 接口调用示例

    测试用例git地址(node.js部分):https://github.com/wuyongxian20/node-api.git 项目架构如下: controllers: 文件夹下为接口文件 log ...

  5. CentOS7 安装记录

    起因是想自建一个本地笔记云存储,按照网上的教程搭建,卡在了其中的一个步骤上(文章见https://www.laobuluo.com/1542.html),卡在了如下图的位置,google了一番解决的办 ...

  6. 【pytorch报错解决】expected input to have 3 channels, but got 1 channels instead

    遇到的问题 数据是png图像的时候,如果用PIL读取图像,获得的是单通道的,不是多通道的.虽然使用opencv读取图片可以获得三通道图像数据,如下: def __getitem__(self, idx ...

  7. 如何为Spring Boot应用程序配置端口

    [转]https://www.javaroad.cn/questions/11162 1 个月前 1.1通过属性文件更新 . /src/main/resources/application.prope ...

  8. RollingRegression(滚动回归分析)之Python实现

    # -*- coding: utf-8 -*-"""Created on Sat Aug 18 11:08:38 2018 @author: acadsoc"& ...

  9. psql主主复制

    主主是mysql的概念,通常在mysql中为保证事务一致也是一台主写,一台做读.pg主从可以互为切换 之前没做数据库部署这部分,一个同事离职暂时没人,接受过来的!mysql做的是主主复制,我理解是可以 ...

  10. SpringBoot项目启动报错:java.lang.RuntimeException: java.lang.reflect.InvocationTargetException

    .   ____          _            __ _ _ /\\ / ___'_ __ _ _(_)_ __  __ _ \ \ \ \( ( )\___ | '_ | '_| | ...