【CF589 E】Another Filling the Grid
一个很套路的容斥裸题,这里记录一下scb 的切题过程
Description
有一个 \(n\times n\) 的矩阵,你需要往每格里填一个 \([1,k]\) 的整数,使得每一行、每一列的最小值都是 \(1\)。求方案数。
\(n\le 250\)
\(k\le 10^9\)
Solution
这题可以 \(O(n)\) 做……不知道这数据范围是什么鬼……
考虑消除掉一维影响后容斥。
预处理一个函数 \(f(i)\) 表示填满 \(i\times n\) 的网格,满足每一列填了至少一个 \(1\) 的方案数。
显然 \(f(0)=0\),\(f(i) = (k^i - (k-1)^i)^n\),\(k^i - (k-1)^i\) 表示任意填充一列的方案数 减去这一列没有 \(1\) 的方案数,那么这一列就至少有一个 \(1\) 咯。
下面所有统计的情况都是满足列限制的。我们考虑对行限制容斥,用总方案数减去不合法的方案数。
即
\(\begin{align} ans = &不对行作限制的方案数 - 第 1 行没有 1 的方案数 - 第 2 行没有 1 的方案数 - 第 3 行没有 1 的方案数 - \cdots \nonumber \\ &- 第 n 行没有 1 的方案数 + 第 1,2 行没有 1 的方案数 + 第 1,3 行没有 1 的方案数 +\cdots \nonumber \end{align}\)
即 \(ans = \sum\limits_{i=0}^n (-1)^i C_n^i (k-1)^{ni} f(n-i)\)
解释一下,就是钦定 \(i\) 行不能有 \(1\)(显然有 \(C_n^i\) 种钦定方案),然后填充其余 \(n-i\) 行的条件是每一列上都有 \(1\)。
\(O(n)\) 计算即可。
还有一道配套容斥题,但并不能公开。
#include<bits/stdc++.h>
#define ll long long
#define N 251
#define mod 1000000007
using namespace std;
inline int read(){
int x=0; bool f=1; char c=getchar();
for(;!isdigit(c); c=getchar()) if(c=='-') f=0;
for(; isdigit(c); c=getchar()) x=(x<<3)+(x<<1)+(c^'0');
if(f) return x; return 0-x;
}
int n,k,f[N],fac[N],ifac[N],ans;
int Pow(int x, int y){
int ret=1;
while(y){
if(y&1) ret=(ll)ret*x%mod;
x=(ll)x*x%mod;
y>>=1;
}
return ret;
}
inline int C(int n, int m){
return (ll)fac[n] * ifac[m] % mod * ifac[n-m] % mod;
}
inline void upd(int &x, int y){
x = (x+y) % mod;
}
int main(){
n=read(), k=read();
fac[0]=1;
for(int i=1; i<=n; ++i){
f[i] = Pow((Pow(k,i)-Pow(k-1,i)+mod)%mod, n),
fac[i] = (ll)fac[i-1] * i % mod;
}
ifac[n] = Pow(fac[n], mod-2);
for(int i=n-1; i>=0; --i) ifac[i] = (ll)ifac[i+1] * (i+1) % mod;
for(int i=0; i<=n; ++i) upd(ans, ((i&1)?mod-1ll:1ll) * C(n,i) % mod * Pow(k-1,(ll)n*i) % mod * f[n-i] % mod);
cout<<ans<<endl;
return 0;
}
【CF589 E】Another Filling the Grid的更多相关文章
- 【编程技巧】EXTJS中Ext.grid.GridPanel配置项autoExpandColumn的使用方法
autoExpandColumn的作用是自动伸展,占满剩余区域.一般使用在列比较少,并且大多数列都比较窄,有一列比较宽的情况下,当然什么时候使用,还是得按照实际情况确定. 使用的时候主要有三点要注意的 ...
- 【CodeChef】Querying on a Grid(分治,最短路)
[CodeChef]Querying on a Grid(分治,最短路) 题面 Vjudge CodeChef 题解 考虑分治处理这个问题,每次取一个\(mid\),对于\(mid\)上的三个点构建最 ...
- 【消灭代办】第2周 - 数组判断、开发工具、transform:matrix、Grid
2018.11.19代办一:[数组判断] 代办描述: 怎么判断一个数组是数组呢?其实这个也是一个常考的题目 关键考点: 1.js中对象类型判断的几种方法 2.数组的知识和灵活运用 解决方案s: 篇幅过 ...
- 【NOIP模拟】Grid(字符串哈希)
题目背景 SOURCE:NOIP2016-RZZ-1 T3 题目描述 有一个 2×N 的矩阵,矩阵的每个位置上都是一个英文小写字符. 现在需要从某一个位置开始,每次可以移动到一个没有到过的相邻位置,即 ...
- 【静默安装】configToolAllCommands响应文件问题
[静默安装]configToolAllCommands响应文件问题 客户在静默安装RAC 12.1.0.2的时候有如下的输出: Successfully Setup Software. As inst ...
- 20个新鲜出炉的网站模板【HTML & PSD】
这里给大家分享20 个新鲜出炉的免费网站模板.这些设计元素将成为你下一个项目的重要素材,可以帮你节省很多的时间.与往常一样,我们经常漫游网络,寻找最好的资源, HTML.CSS 和 PSD 等等,记得 ...
- 【响应式】foundation栅格布局的“尝鲜”与“填坑”
提到响应式,就不得不提两个响应式框架--bootstrap和foundation.在标题上我已经说明白啦,今天给大家介绍的是foundation框架. 何为"尝鲜"?就是带大伙 ...
- 【Oracle RAC】Linux系统Oracle11gR2 RAC安装配置详细过程V3.1(图文并茂)
[Oracle RAC]Linux系统Oracle11gR2 RAC安装配置详细过程V3.1(图文并茂) 2 Oracle11gR2 RAC数据库安装准备工作2.1 安装环境介绍2.2 数据库安装软件 ...
- 【Oracle RAC】Linux系统Oracle12c RAC安装配置详细记录过程V2.0(图文并茂)
[Oracle RAC]Linux系统Oracle12c RAC安装配置详细过程V2.0(图文并茂) 2 Oracle12c RAC数据库安装准备工作2.1 安装环境介绍2.2 数据库安装软件下载3 ...
随机推荐
- sping+redis实现消息队列的乱码问题
使用spring支持redis实现消息队列,参考官方样例:https://spring.io/guides/gs/messaging-redis/ 实现后在运行过程中发现消费者在接收消息时会出现乱码的 ...
- (二)Redis之Jedis概念和HelloWorld实现以及JedisPool的使用
一.Jedis概念 实际开发中,我们需要用Redis的连接工具连接Redis然后操作Redis, 对于主流语言,Redis都提供了对应的客户端: 官网:https://redis.io/clients ...
- 【Transact-SQL】计算整个表中所有值的出现的次数
原文:[Transact-SQL]计算整个表中所有值的出现的次数 一个表有3列,5行,那么一共有15个值,现在要计算整个表中所有值在表中出现的次数,不过这里表的列数是不确定的,上面的例子是3列,实际上 ...
- 动手实现CNN卷积神经网络
数据集采用的是手写数据集(http://yann.lecun.com/exdb/mnist/): 本文构建的CNN网络图如下: 像素点:28*28 = 784,55000张手写数字图片. # -*- ...
- Keras 训练 inceptionV3 并移植到OpenCV4.0 in C++
1. 训练 # --coding:utf--- import os import sys import glob import argparse import matplotlib.pyplot as ...
- vue 2.0 + 如何实现加入购物车,小球飞入的动画
github源码地址:https://github.com/13476075014/node-vue/tree/master/mynodeproject/13.sell/sell 在移动端经常会有加入 ...
- elementui禁用树形结构全部复选框
需求:编辑回显数据后,禁用树形结构复选框,不可选中,无复选框也不可选中 <el-tabs v-model="activeName" @tab-click="hand ...
- vue之生命周期与导航守卫
组件钩子函数: beforeCreate.created.beforeMount.mounted.beforeUpdate.updated.beforeDestroy.destoryed 还有两个特殊 ...
- 六、TreeMap的使用 及其源码解析
TreeMap中的元素默认按照keys的自然排序排列 1. 构造函数TreeMap(): 创建一个空的TreeMap ,keys按照自然排序TreeMap(Comparator comparator) ...
- 虚拟机ipv6环境搭建操作指南
一.vmware的相关配置 (1)点击编辑,选择虚拟网络编辑器 (2)选择带NAT模式的VMnet8网络,点击NAT设置 (3)在NAT设置中启用IPV6 (4)设置好后,点击应用 (5)再选择镜 ...