HDU 6415 Rikka with Nash Equilibrium (计数DP)
题意:给两个整数n,m,让你使用 1 ~ n*m的所有数,构造一个矩阵n*m的矩阵,此矩阵满足:只有一个元素在它的此行和此列中都是最大的,求有多种方式。
析:根据题意,可以知道那个元素一定是 n * m,因为这个数是最大的,不会有其他可能了,我们考虑从大小到的顺序放,先放最大的,再放次大的,那么想想次大的位置应该是在哪呢,必然是在最大数的所有的行或者是所有的列,因为如果不这样做,那么它一定也是它所在行和列中最大的了,就不满足条件了,同样再放第三大的,也是要放到第一大或者是第二大的所有行或者是列中,同理其他也是这样。所以就有了状态方程,dp[i][j][k] 表示,i 行中已经放过数,j 列中已经放过数了,最后放的数是 k,因为正着放和反着放结果是一样的,所以我们可以正着放,也就是按照 1 ~ n*m放,转移方程如下:
1.考虑先增加新的一行,那么就是在已经存在的所有列中选择一列,然后再在该列中选择一个位置(此位置不能是行与列的交叉点)也就 dp[i][j][k] = dp[i-1][j][k-1] * j * (n-i+1)
2.考虑都加新的一列,那么就是在已经存在的所有行中选择一行,然后再在该列中选择一个位置(此位置不能是行与列的交叉点),也就是 dp[i][j-1][k-1] * i * (m-j+1)
3.考虑放到行与列的交叉点上,dp[i][j][k] = dp[i][j][k-1] * (i*j-k+1)。
再考虑可以使用滚动数组进行优化,当然也可以不用优化。
代码如下:
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int maxn = 80 + 7;
int n, m;
int dp[2][maxn][maxn]; int main(){
int T; scanf("%d", &T);
while(T--){
int K;
scanf("%d %d %d", &n, &m, &K);
memset(dp[0], 0, sizeof dp[0]);
dp[0][1][1] = n * m % K;
int cur = 1;
for(int k = 2; k <= n * m; ++k, cur ^= 1){
memset(dp[cur], 0, sizeof dp[cur]);
for(int i = 1; i <= n; ++i)
for(int j = 1; j <= m; ++j){
if(i * j < k) continue;
dp[cur][i][j] = ((LL)dp[cur^1][i][j] * (i*j-k+1) % K + (LL)dp[cur^1][i-1][j] * j * (n-i+1) % K + (LL)dp[cur^1][i][j-1] * i * (m-j+1)% K) % K;
}
}
printf("%I64d\n", dp[cur^1][n][m]);
}
return 0;
}
HDU 6415 Rikka with Nash Equilibrium (计数DP)的更多相关文章
- [hdoj6415 Rikka with Nash Equilibrium][dp]
http://acm.hdu.edu.cn/showproblem.php?pid=6415 Rikka with Nash Equilibrium Time Limit: 10000/5000 MS ...
- HDU - 6415 多校9 Rikka with Nash Equilibrium(纳什均衡+记忆化搜索/dp)
Rikka with Nash Equilibrium Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 524288/524288 K ...
- 杭电多校第九场 HDU6415 Rikka with Nash Equilibrium dp
Rikka with Nash Equilibrium Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 524288/524288 K ...
- 【杂题总汇】HDU2018多校赛第九场 Rikka with Nash Equilibrium
[HDU2018多校赛第九场]Rikka with Nash Equilibrium 又是靠这样一道题擦边恰好和第两百名分数一样~愉快
- HDU6415 Rikka with Nash Equilibrium
HDU6415 Rikka with Nash Equilibrium 找规律 + 大数 由于规律会被取模破坏,所以用了java 找出规律的思路是: 对于一个n*m的矩阵构造,我先考虑n*1的构造,很 ...
- hdu6415 Rikka with Nash Equilibrium (DP)
题目链接 Problem Description Nash Equilibrium is an important concept in game theory. Rikka and Yuta are ...
- HDU 6377 度度熊看球赛 (计数DP)
度度熊看球赛 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Subm ...
- hdu-6415 Rikka with Nash Equilibrium dp计数题
http://acm.hdu.edu.cn/showproblem.php?pid=6415 题意:将1~n*m填入一个n*m矩阵 问只有一个顶点的构造方案. 顶点的定义是:某数同时是本行本列的最大值 ...
- HDU 6086 Rikka with String AC自动机 + DP
Rikka with String Problem Description As we know, Rikka is poor at math. Yuta is worrying about this ...
随机推荐
- POJ1149 PIGS 【最大流 + 构图】
题目链接:http://poj.org/problem?id=1149 PIGS Time Limit: 1000MS Memory Limit: 10000K Total Submissions ...
- [LuoguP2167][SDOI2009]Bill的挑战_容斥原理/状压dp
Bill的挑战 题目链接:https://www.luogu.org/problem/P2167 数据范围:略. 题解: 因为$k$特别小,想到状压. 状压的方式也非常简单,就是暴力枚举. 但是会不会 ...
- 真理胜于一切 JAVA模拟表单提交
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import ...
- 网站页面顶部出现空白行字符的原因以及完美解决办法
转自个人博客:https://www.hurbai.com 有时候网页头部会出现一个空白行,查看源码发现body开头初有一个非法字符 // 如果是Windows系统,修改为:$WIN = 1; $W ...
- HTNL基础之四
11.<nav>导航元素 标签定义及使用说明 表示页面中导航链接的部分,例如:传统导航条,侧边栏导航,页内导航,翻页等 <nav> 标签定义导航链接的部分. 并不是所有的 HT ...
- Thinkphp5+Layui上传图片
ThinkPHP是一个免费开源的,快速.简单的面向对象的轻量级PHP开发框架,是为了敏捷WEB应用开发和简化企业应用开发而诞生的.ThinkPHP从诞生以来一直秉承简洁实用的设计原则,在保持出色的性能 ...
- linux 对外开放端口
查看守护进程端口 netstat -ntpl 查看开放的端口 iptables -nvL 查看端口是否可访问:telnet ip 端口号 (如本机的35465:telnet localhost 354 ...
- MySQL_Utilities工具
需求 Python 2.6 MySQL Connector/Python 连接器 下载地址: http://dev.mysql.com/downloads/utilities/ ...
- 怎样终止HTTP请求
使用 xhr.abort() var xhr = new XMLHttpRequest(); xhr.open('GET', 'http://www.example.com/page.php', tr ...
- EFcore的 基础理解<三> 多对多,唯一约束
唯一约束,替代键. modelBuilder.Entity<Car>() .HasAlternateKey(c => new { c.State, c.LicensePlate }) ...