HDU-5728-PowMod-求phi(i*n)前缀和+指数循环节
HDU-5728-PowMod-求phi(i*n)前缀和+指数循环节
【Problem Description】
令\(k=\sum_{i=1}^m \varphi(i\cdot n)\ mod \ (10^9+7)\)。求\(k^{k^{k^{\dots}}}\ mod \ p\)。
【Solution】
因为\(n\)的所有质因子的幂次都为\(1\),所以有\(gcd(p,\frac{n}{p})=1\)。其中\(p\)为\(n\)的最小质因子
- 假设\(i\ mod \ p\ne 0\),则有\(gcd(i\cdot \frac{n}{p},p)=1\)。因此有\(\varphi(i\cdot n)=\varphi(i\cdot \frac{n}{p}\cdot p)=\varphi(i\cdot \frac{n}{p})\cdot \varphi(p)\)。
- 假设\(i\ mod \ p=0\),则有\(gcd(i\cdot \frac{n}{p},p)=p\)。因此有\(\varphi(i\cdot n)=\varphi(i\cdot \frac{n}{p}\cdot p)=\varphi(i\cdot \frac{n}{p})\cdot p\)。
根据以上两条性质可得,令\(f(m,n)=\sum_{i=1}^m\varphi(i\cdot n)\):
\\=\varphi(p)\sum_{i\ mod\ p\ne 0}\varphi(i\cdot \frac{n}{p})+\sum_{i\ mod \ p=0}\varphi(i\cdot \frac{n}{p})\cdot(\varphi(p)+1)
\\=\varphi(p)\cdot\Bigg(\sum_{i\ mod\ p\ne0}\varphi(i\cdot \frac{n}{p})+\sum_{i\ mod\ p=0}\varphi(i\cdot \frac{n}{p}) \Bigg)+\sum_{i\ mod \ p=0}\varphi(i\cdot \frac{n}{p})
\\=\varphi(p)\cdot\sum_{i=1}^m\varphi(i\cdot \frac{n}{p})+\sum_{i=1}^{\frac{m}{p}}\varphi(i\cdot n)
\]
所以可得:\(f(m,n)=\varphi(p)\cdot f(m,\frac{n}{p})+f(\frac{n}{p},n)\)。这是一个递推式,可用递归求得。到此我们求得了\(k\)的值。
对于\(k^{k^{k^{\dots}}}\ mod \ p\)可以用扩展欧拉定理进行欧拉降幂即可。
【Code】
/*
* @Author: Simon
* @Date: 2019-09-02 18:00:24
* @Last Modified by: Simon
* @Last Modified time: 2019-09-02 20:22:51
*/
#include<bits/stdc++.h>
using namespace std;
#define INF 0x3f3f3f3f
#define maxn 10000005
typedef long long LL;
const int mod=1e9+7;
int prime[maxn],cnt=0;
LL phi[maxn],sum[maxn];
bool vis[maxn];
void Euler(){
phi[1]=1;
for(int i=2;i<maxn;i++){
if(!vis[i]){
prime[++cnt]=i;
phi[i]=i-1;
}
for(int j=1;j<=cnt&&i*prime[j]<maxn;j++){
vis[i*prime[j]]=1;
if(i%prime[j]==0){
phi[i*prime[j]]=phi[i]*prime[j];
break;
}
phi[i*prime[j]]=phi[i]*(prime[j]-1);
}
}
for(int i=1;i<maxn;i++) sum[i]=(sum[i-1]+phi[i])%mod;
}
int dfs(int m,int n){
if(n==1) return sum[m];
if(m==0) return 0;
for(int i=2;i*i<=n;i++){ //找最小质因子
if(n%i==0){
return (phi[i]*1LL*dfs(m,n/i)%mod+dfs(m/i,n))%mod;
}
}
if(n>1) return (phi[n]*dfs(m,n/n)%mod+dfs(m/n,n))%mod; //n本身就是素数
}
int gcd(int a,int b){
return b==0?a:gcd(b,a%b);
}
int fpow(int a,int b,int mod){
a%=mod;int ans=1;
while(b){
if(b&1) ans=ans*1LL*a%mod;
a=a*1LL*a%mod;
b>>=1;
}
return ans;
}
int f(int k,int m){ //递归欧拉降幂
if(m==1) return 0;
int p=phi[m];
int t=f(k,p);
int g=gcd(k,m);
if(g==1) return fpow(k,t,m);
else return fpow(k,t+p,m);
}
int main(){
#ifndef ONLINE_JUDGE
//freopen("input.in","r",stdin);
//freopen("output.out","w",stdout);
#endif
ios::sync_with_stdio(false);
cin.tie(0);Euler();
int n,m,p;
while(cin>>n>>m>>p){
int k=dfs(m,n);
cout<<f(k,p)%p<<endl;
}
#ifndef ONLINE_JUDGE
cout<<endl;system("pause");
#endif
return 0;
}
HDU-5728-PowMod-求phi(i*n)前缀和+指数循环节的更多相关文章
- HDU 5728 - PowMod
HDU 5728 - PowMod 题意: 定义: k = ∑(i=1,m) φ(i∗n) mod 1000000007 给出: n,m,p ,且 n 无平方因子 求: ans= k^(k^(k ...
- HDU3977 Evil teacher 求fib数列模p的最小循环节
In the math class, the evil teacher gave you one unprecedented problem! Here f(n) is the n-th fibona ...
- HDU - 5728:PowMod (欧拉函数&指数循环节)
Declare: k=∑ m i=1 φ(i∗n) mod 1000000007 k=∑i=1mφ(i∗n) mod 1000000007 n n is a square-free number. φ ...
- 【转】【关于 A^x = A^(x % Phi(C) + Phi(C)) (mod C) 的若干证明】【指数循环节】
[关于 A^x = A^(x % Phi(C) + Phi(C)) (mod C) 的若干证明][指数循环节] 原文地址:http://hi.baidu.com/aekdycoin/item/e493 ...
- PowMod (欧拉推式子 + 指数循环节)
最主要的步骤是用 1式子和2式子推 3式子.(难点,看了很多博客最后的时候那个式子看不懂) 当n, m互质时即gcd(n, m) == 1,存在phi(n * m) = phi(m) * phi(n) ...
- hdu 3307 简单的指数循环节
#include<stdio.h>#include<string.h>#include<algorithm>#define LL __int64using name ...
- hdu_2837_Calculation(欧拉函数,快速幂求指数循环节)
Assume that f(0) = 1 and 0^0=1. f(n) = (n%10)^f(n/10) for all n bigger than zero. Please calculate f ...
- HDU 3746 - Cyclic Nacklace & HDU 1358 - Period - [KMP求最小循环节]
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3746 Time Limit: 2000/1000 MS (Java/Others) Memory Li ...
- Hdu 1358 Period (KMP 求最小循环节)
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1358 题目描述: 给出一个字符串S,输出S的前缀能表达成Ak的所有情况,每种情况输出前缀的结束位置和 ...
随机推荐
- windows2008R2下iis7.5中的url重写(urlrewrite)
以前在windows2003里,使用的是iis6.0,那时常使用的URL重写组件是iisrewrite,当服务器升级到windows2008R2时,IIS成了64位的7.5,结果iisreite组件是 ...
- APT攻击与银行
APT与传统攻击 APT:团队作战,拥有自研工具集,意图明确,技术高超,拥有政府或商业背景,潜伏期多达数年. 传统攻击:脚本小子,水平参差不齐,短期攻击,直接获取利益为目标. 攻击目标 APT攻击链 ...
- DevOps - 持续集成(Continuous Integration)
1 - 持续集成简介 持续集成(Continuous integration,简称CI)是软件的开发和发布标准流程中最重要的部分. 作为一种开发实践,在CI中可以通过自动化等手段高频率地去获取产品反馈 ...
- Python 访问一个网址之后输入信息进行检索
window Python 3 Pycharm软件 from selenium import webdriver #导入Selenium的webdriver from selenium.webdriv ...
- [转帖]Dockerfile: ENTRYPOINT和CMD的区别
Dockerfile: ENTRYPOINT和CMD的区别 https://zhuanlan.zhihu.com/p/30555962 在我们查阅Dockerfile的官方文档时, 有可能发现一些命令 ...
- [EF] - "已有打开的与此 Command 相关联的 DataReader,必须首先将它关闭" 之解决
错误 解决 在 ConnectionString 中添加 MultipleActiveResultSets=true(适用于SQL 2005以后的版本).MultipleActiveResultSet ...
- Word 文档内超级链接跳转到书签
1. 前言 在Word文档内如何实现一些跳转的超链接呢?Word中,一些外部链接,我们通常叫作超链接,内部链接我们可以叫书签.如何在文档中如何使用书签,跳转到指定位置? 这里我在网上随便找了一份模拟试 ...
- 『Python基础』第20节:深浅copy
一. 赋值运算 l1 = [1, 2, 'conan', [11, 22]] l2 = l1 l1[0] = 111 print(l1) # [111, 2, 'conan', [11, 22]] p ...
- linux 命令行 光标移动技巧等
看一个真正的专家操作命令行绝对是一种很好的体验-光标在单词之间来回穿梭,命令行不同的滚动.在这里强烈建立适应GUI节目的开发者尝试一下在提示符下面工作.但是事情也不是那么简单,还是需要知道“如何去做” ...
- PHP即时实时输出内容
一般情况下,PHP都是将整个页面全部执行完成后,才会把要输出的内容发送回客户端. for ($i = 0; $i < 10; $i++) { echo $i; sleep(1); } 这段代码会 ...