链接:

https://www.acwing.com/problem/content/description/203/

题意:

在一个平面直角坐标系的第一象限内,如果一个点(x,y)与原点(0,0)的连线中没有通过其他任何点,则称该点在原点处是可见的。

例如,点(4,2)就是不可见的,因为它与原点的连线会通过点(2,1)。

部分可见点与原点的连线如下图所示:

编写一个程序,计算给定整数N的情况下,满足0≤x,y≤N的可见点(x,y)的数量(可见点不包括原点)。

思路:

考虑当gcd(x, y) != 1时, 坐标(x/gcd(x, y), y/gcd(x, y))和坐标(x, y),位于一条直线上.

所以只有gcd(x, y)为1的点可以看得到. 打个表, 再在答案上加1即可.考虑(1, 1)

代码:

#include <bits/stdc++.h>
using namespace std;
typedef long long LL; LL Cnt[1010];
int n; int Euler(int x)
{
int res = x;
for (int i = 2;i <= x;i++)
{
if (x%i == 0)
{
while (x % i == 0)
x /= i;
res = res/i*(i - 1);
}
}
if (x > 1)
res = res/x*(x-1);
return res;
} int main()
{
for (int i = 1;i <= 1000;i++)
Cnt[i] = Cnt[i-1]+Euler(i)*2;
int t, cnt = 0;
scanf("%d", &t);
while (t--)
{
scanf("%d", &n);
printf("%d %d %lld\n", ++cnt, n, Cnt[n]+1);
} return 0;
}

Acwing-201-可见的点(数学, 欧拉函数)的更多相关文章

  1. AcWing 201. 可见的点 (欧拉函数打表)打卡

    在一个平面直角坐标系的第一象限内,如果一个点(x,y)与原点(0,0)的连线中没有通过其他任何点,则称该点在原点处是可见的. 例如,点(4,2)就是不可见的,因为它与原点的连线会通过点(2,1). 部 ...

  2. 【BZOJ4173】数学 欧拉函数神题

    [BZOJ4173]数学 Description Input 输入文件的第一行输入两个正整数 . Output 如题 Sample Input 5 6 Sample Output 240 HINT N ...

  3. NOIP模拟:切蛋糕(数学欧拉函数)

    题目描述  BG 有一块细长的蛋糕,长度为 n. 有一些人要来 BG 家里吃蛋糕, BG 把蛋糕切成了若干块(整数长度),然后分给这些人. 为了公平,每个人得到的蛋糕长度和必须相等,且必须是连续的一段 ...

  4. 【BZOJ-4173】数学 欧拉函数 + 关于余数的变换

    4173: 数学 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 306  Solved: 163[Submit][Status][Discuss] D ...

  5. [bzoj]2705: [SDOI2012]Longge的问题[数论][数学][欧拉函数][gcd]

    [bzoj]P2705 OR [luogu]P2303 Longge的问题 Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需 ...

  6. 数学(欧拉函数):UVAOJ 11426 GCD - Extreme (II)

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAB4AAAAQ4CAIAAABnsVYUAAAgAElEQVR4nOzdPW7zvII/bG1gCi9gKq ...

  7. bzoj 2705 数学 欧拉函数

    首先因为N很大,我们几乎不能筛任何东西 那么考虑设s(p)为 gcd(i,n)=p 的个数,显然p|n的时候才有意义 因为i与n的gcd肯定是n的因数,所以那么可得ans=Σ(p*s(p)) 那么对于 ...

  8. Luogu P2158 [SDOI2008]仪仗队【数学/欧拉函数】by cellur925

    题目描述 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线所及的学生人数来判断队伍是否整齐(如下图 ...

  9. acwing 873. 欧拉函数 模板

    地址 https://www.acwing.com/problem/content/875/ 给定n个正整数ai,请你求出每个数的欧拉函数. 欧拉函数的定义 输入格式 第一行包含整数n. 接下来n行, ...

随机推荐

  1. IDEA安装Git

    1.下载Git 官方地址为:https://git-scm.com/download/win 2.下载完之后,双击安装 3.选择安装目录 4.选择组件 5.开始菜单目录名设置 6.选择使用命令行环境 ...

  2. Infix to Prefix conversion using two stacks

    Infix : An expression is called the Infix expression if the operator appears in between the operands ...

  3. SQL Server 验证身份证合法性函数(使用VBScript.RegExp)

    原文:SQL Server 验证身份证合法性函数(使用VBScript.RegExp) 版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/wzy0623 ...

  4. 二维数组(解引用、指针数组、数组的指针)——C语言

    二维数组 在说二维数组前先来说下一维数组中的指针数组和和数组的指针 一.一维数组中指针数组和数组指针的区别 指针数组: ]; []的优先级比*高,首先它是一个数组,它的大小是5,它里面存放的数据类型是 ...

  5. 北电之死:谁谋杀了华为的对手?——银湖资本(Silver Lake)董事总经理爱德华·詹德出任CEO,既不了解华为,也不重视中国,直截了当地否决了收购华为

    作者:戴老板:微信公众号:饭统戴老板(ID: worldofboss) 2003年5月,北京SARS疫情紧张,摩托罗拉集团总裁迈克·扎菲罗夫斯基(Mike Zafirovski)却准备不走寻常路,决定 ...

  6. Spring boot data jpa 示例

    一.maven pom.xml文件 <?xml version="1.0" encoding="UTF-8"?> <project xmlns ...

  7. Spring 配置文件注入

    一.Spring配置文件注入 package com.zxguan.demo; public class Person { private String name; private int age; ...

  8. sql lesson21homework

    2017-08-15 18:03:17 mysql> show databases;+--------------------+| Database           |+---------- ...

  9. UDP通信简单 小结

    Android手机版和电脑版 效果图: 通过WiFi局域网 电脑和手机连接通信. 电脑版本和手机版本使用了相同的消息发送头协议, 可以相互接收消息. 若有做的不好的地方还希望大家指导一下. 1. 手机 ...

  10. centos7.4 安装 .net core 2.2

    Step 1:首先注册Microsoft签名密钥,每台机器注册一次就行. sudo rpm -Uvh https://packages.microsoft.com/config/rhel/7/pack ...