Educational Codeforces Round 63 (Rated for Div. 2)

D. Beautiful Array

time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

You are given an array aa consisting of nn integers. Beauty of array is the maximum sum of some consecutive subarray of this array (this subarray may be empty). For example, the beauty of the array [10, -5, 10, -4, 1] is 15, and the beauty of the array [-3, -5, -1] is 0.

You may choose at most one consecutive subarray of aa and multiply all values contained in this subarray by xx. You want to maximize the beauty of array after applying at most one such operation.

Input

The first line contains two integers nn and xx (1≤n≤3⋅105,−100≤x≤1001≤n≤3⋅105,−100≤x≤100) — the length of array aa and the integer xx respectively.

The second line contains nn integers a1,a2,…,ana1,a2,…,an (−109≤ai≤109−109≤ai≤109) — the array aa.

Output

Print one integer — the maximum possible beauty of array aa after multiplying all values belonging to some consecutive subarray xx.

Examples

input

Copy

5 -2
-3 8 -2 1 -6

output

Copy

22

input

Copy

12 -3
1 3 3 7 1 3 3 7 1 3 3 7

output

Copy

42

input

Copy

5 10
-1 -2 -3 -4 -5

output

Copy

0

Note

In the first test case we need to multiply the subarray [-2, 1, -6], and the array becomes [-3, 8, 4, -2, 12] with beauty 22([-3, 8, 4, -2, 12]).

In the second test case we don't need to multiply any subarray at all.

In the third test case no matter which subarray we multiply, the beauty of array will be equal to 0.

题意:

给你一个含有n个数字的数组,和一个整数x

你可以选择一个连续的区间\([l,r]\) 然后\(a[l]\)到\(a[r]\) 每一个数\(a[i]\) 变为\(a[i]*x\)

使改变后的数组的最大连续子段和最大。

思路:

动态规划解决该问题:

设\(dp[i][0]\) 代表到第i个位置,没乘以x的最大子段和。

设\(dp[i][1]\) 代表到第i个位置,结尾是乘以x的最大子段和。

设\(dp[i][2]\) 代表到第i个位置,前面有乘以x的,但是当前结尾是没乘x的最大子段和。

转移方程:

dp[i][0] = max(0ll, dp[i - 1][0]) + a[i];
dp[i][1] = max(max(dp[i - 1][1], dp[i - 1][0]), 0ll) + x * a[i];
dp[i][2] = max(max(dp[i - 1][2], dp[i - 1][1]), 0ll) + a[i];
ans = max(ans, max(dp[i][0], max(dp[i][1], dp[i][2])));

AC 代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define sz(a) int(a.size())
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
#define du3(a,b,c) scanf("%d %d %d",&(a),&(b),&(c))
#define du2(a,b) scanf("%d %d",&(a),&(b))
#define du1(a) scanf("%d",&(a));
using namespace std;
typedef long long ll;
ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
ll powmod(ll a, ll b, ll MOD) {a %= MOD; if (a == 0ll) {return 0ll;} ll ans = 1; while (b) {if (b & 1) {ans = ans * a % MOD;} a = a * a % MOD; b >>= 1;} return ans;}
void Pv(const vector<int> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%d", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}}
void Pvl(const vector<ll> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%lld", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}} inline void getInt(int *p);
const int maxn = 1000010;
const int inf = 0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
int n;
ll x;
ll a[maxn];
ll dp[maxn][4];
int main()
{
//freopen("D:\\code\\text\\input.txt","r",stdin);
//freopen("D:\\code\\text\\output.txt","w",stdout);
gbtb;
cin >> n >> x;
ll sum = 0ll;
repd(i, 1, n) {
cin >> a[i];
sum += a[i];
}
ll ans = 0ll;
ans = max(ans, sum);
repd(i, 1, n) {
dp[i][0] = max(0ll, dp[i - 1][0]) + a[i];
dp[i][1] = max(max(dp[i - 1][1], dp[i - 1][0]), 0ll) + x * a[i];
dp[i][2] = max(max(dp[i - 1][2], dp[i - 1][1]), 0ll) + a[i];
ans = max(ans, max(dp[i][0], max(dp[i][1], dp[i][2])));
}
cout << ans << endl;
return 0;
} inline void getInt(int *p)
{
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '0');
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 - ch + '0';
}
} else {
*p = ch - '0';
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 + ch - '0';
}
}
}

[Educational Codeforces Round 63 ] D. Beautiful Array (思维+DP)的更多相关文章

  1. Educational Codeforces Round 63 D. Beautiful Array

    D. Beautiful Array time limit per test 2 seconds memory limit per test 256 megabytes input standard ...

  2. Educational Codeforces Round 63 (Rated for Div. 2) 题解

    Educational Codeforces Round 63 (Rated for Div. 2)题解 题目链接 A. Reverse a Substring 给出一个字符串,现在可以对这个字符串进 ...

  3. Educational Codeforces Round 63部分题解

    Educational Codeforces Round 63 A 题目大意就不写了. 挺简单的,若果字符本来就单调不降,那么就不需要修改 否则找到第一次下降的位置和前面的换就好了. #include ...

  4. Educational Codeforces Round 40 C. Matrix Walk( 思维)

    Educational Codeforces Round 40 (Rated for Div. 2) C. Matrix Walk time limit per test 1 second memor ...

  5. Educational Codeforces Round 53 E. Segment Sum(数位DP)

    Educational Codeforces Round 53 E. Segment Sum 题意: 问[L,R]区间内有多少个数满足:其由不超过k种数字构成. 思路: 数位DP裸题,也比较好想.由于 ...

  6. Educational Codeforces Round 63 选做

    D. Beautiful Array 题意 给你一个长度为 \(n\) 的序列.你可以选择至多一个子段,将该子段所有数乘上给定常数 \(x\) .求操作后最大的最大子段和. 题解 考虑最大子段和的子段 ...

  7. Educational Codeforces Round 63 (Rated for Div. 2) D. Beautiful Array (简单DP)

    题目:https://codeforces.com/contest/1155/problem/D 题意:给你n,x,一个n个数的序列,你可以选择一段区间,区间的数都乘以x,然后求出最大字段和 思路: ...

  8. Educational Codeforces Round 63 (Rated for Div. 2) D. Beautiful Array 分类讨论连续递推dp

    题意:给出一个 数列 和一个x 可以对数列一个连续的部分 每个数乘以x  问该序列可以达到的最大连续序列和是多少 思路: 不是所有区间题目都是线段树!!!!!! 这题其实是一个很简单的dp 使用的是分 ...

  9. Educational Codeforces Round 63 (Rated for Div. 2) D. Beautiful Array(动态规划.递推)

    传送门 题意: 给你一个包含 n 个元素的序列 a[]: 定义序列 a[] 的 beauty 为序列 a[] 的连续区间的加和最大值,如果全为负数,则 beauty = 0: 例如: a[] = {1 ...

随机推荐

  1. 使用FRP配置Windows远程控制

    一款很好用的内网穿透工具--FRP 前言 使用内网穿透工具--FRP,以及一台云服务器当做服务端,进行简单配置后即可远程访问 配置 FRP 服务端的前提条件是需要一台具有公网 IP 的设备,得益于 F ...

  2. Web模糊测试:WFuzz的坑和快速入门

    转载自 FreeBuf.COM 首先说下我对wfuzz这个工具的简单介绍和理解.工具主要是做web模糊测试,最开始做fuzz我是自己写个脚本配合一些常用工具来测,后来看见这款工具因为是比较简单吧,学习 ...

  3. winform 更新文件上传(一)

    using Common; using DevExpress.XtraEditors; using FileModel.UpLoad; using System; using System.Colle ...

  4. 冲刺Noip2017模拟赛5 解题报告——五十岚芒果酱

    1. 公约数(gcd) [问题描述] 给定一个正整数,在[,n]的范围内,求出有多少个无序数对(a,b)满足 gcd(a,b)=a xor b. [输入格式] 输入共一行,一个正整数n. [输出格式] ...

  5. codevs 2853:方格游戏

    (排版没搞好,这一行用来卖萌~) 题目描述 Description 菜菜看到了一个游戏,叫做方格游戏~ 游戏规则是这样的: 在一个n*n的格子中,在每个1*1的格子里都能获得一定数量的积分奖励,记左上 ...

  6. C# lambda查询带返回值

    问题来源: <深入理解C#(第3版)> 11页 具体如下: var lists=new List<string>{"111","222" ...

  7. (模板)求逆矩阵luoguP4783

    题目链接:https://www.luogu.org/problem/P4783 题意:求矩阵的逆. 思路:高斯消元法求矩阵的逆,n为400,卡常,我是开了O2优化才AC的.. AC代码: #incl ...

  8. 后台返回数据为map集合,前端js处理方法

    当后台返回的数据不是json而是map集合的时候,前端js中处理就将其看作是一个数组,例如后台返回的代码入下: Map<String, String> result = new HashM ...

  9. DP_Milking Time

    Bessie is such a hard-working cow. In fact, she is so focused on maximizing her productivity that sh ...

  10. T100——汇总错误消息显示

    初始化 CALL cl_err_collect_init() 汇总消息显示 CALL cl_err_collect_show()