题意

给出nnn个点,mmm条边.多次询问,求编号在[l,r][l,r][l,r]内的边形成的联通块的数量,强制在线.

分析

  • LCTLCTLCT维护动态最大生成树,先将每条边依次加进去,若形成环就断掉最早加进去(编号最小)的边,然后记录early[]early[]early[]数组,表示第i条边弹掉了哪条边,若没有弹出边,early[i]=0early[i]=0early[i]=0
  • 然后每个询问的答案就是用n减掉[l,r]区间内early值小于l的边的数量,可以用主席树来维护
  • 正确性证明:因为是维护的最大生成树,而early[i]early[i]early[i]又是最大生成树中的最小边,那么(early[i],i)(early[i],i)(early[i],i)这些边一定不能让iii的两个端点联通.所以说对于r>=ir>=ir>=i且l>early[i]l>early[i]l>early[i]的询问,如果按编号从小到大加入边,那么在iii之前它的两个端点一定还不联通,加入iii这条边让它们合并成为一个联通块,答案就减一.所以说只要求出所有earlyearlyearly在主席树上维护就行了.
  • 注意有自环(良心样例有自环)

CODE

#include <cctype>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long LL;
char cb[1<<15],*cs=cb,*ct=cb;
#define getc() (cs==ct&&(ct=(cs=cb)+fread(cb,1,1<<15,stdin),cs==ct)?0:*cs++)
template<class T>inline void read(T &res) {
char ch; for(;!isdigit(ch=getc()););
for(res=ch-'0';isdigit(ch=getc());res=res*10+ch-'0');
}
const int MAXN = 200005;
const int MAXM = MAXN*20;
int n;
namespace LCT {
const int N = 400005;
#define ls ch[x][0]
#define rs ch[x][1]
int ch[N][2], fa[N], mn[N]; bool rev[N];
inline bool isr(int x) { return ch[fa[x]][0] != x && ch[fa[x]][1] != x; }
inline bool get(int x) { return ch[fa[x]][1] == x; }
inline int Max(int x, int y) { if(x <= n) return y; if(y <= n) return x; return min(x, y); }
inline void upd(int x) { mn[x] = Max(x, Max(mn[ls], mn[rs]));}
inline void mt(int x) { if(rev[x]) rev[x]^=1, rev[ls]^=1, rev[rs]^=1, swap(ls, rs); }
void mtpath(int x) { if(!isr(x)) mtpath(fa[x]); mt(x); }
inline void rot(int x) {
int y = fa[x], z = fa[y];
bool l = get(x), r = l^1;
if(!isr(y)) ch[z][get(y)] = x;
fa[ch[x][r]] = y, fa[y] = x, fa[x] = z;
ch[y][l] = ch[x][r], ch[x][r] = y;
upd(y), upd(x);
}
inline void splay(int x) {
mtpath(x);
for(; !isr(x); rot(x))
if(!isr(fa[x])) rot(get(x) == get(fa[x]) ? fa[x] : x);
}
inline int access(int x) { int y = 0;
for(; x; x = fa[y=x]) splay(x), ch[x][1] = y, upd(x);
return y;
}
inline void bert(int x) { access(x), splay(x), rev[x]^=1; }
inline int sert(int x) { access(x), splay(x); for(; ls; x=ls); return x; }
inline bool judge(int x, int y) { bert(x); return sert(y) == x; }
inline void link(int x, int y) { bert(x); fa[x] = y; }
inline void split(int x, int y) { bert(x); access(y), splay(y); }
inline void cut(int x, int y) { split(x, y); ch[y][0] = fa[x] = 0; upd(y); }
inline int findmn(int x, int y) { split(x, y); return mn[y]; }
#undef ls
#undef rs
}
int m, q, type, pre[MAXN], u[MAXN], v[MAXN];
int rt[MAXN], sz, sum[MAXM], ch[MAXM][2];
void modify(int &i, int p, int l, int r, int x) {
if(!i) i = ++sz;
sum[i] = sum[p] + 1;
if(l == r) return;
int mid = (l + r) >> 1;
if(x <= mid) ch[i][1] = ch[p][1], modify(ch[i][0], ch[p][0], l, mid, x);
else ch[i][0] = ch[p][0], modify(ch[i][1], ch[p][1], mid+1, r, x);
}
int query(int i, int j, int l, int r, int ql, int qr) {
if(l == ql && r == qr) return sum[j] - sum[i];
int mid = (l + r) >> 1;
if(qr <= mid) return query(ch[i][0], ch[j][0], l, mid, ql, qr);
else if(ql > mid) return query(ch[i][1], ch[j][1], mid+1, r, ql, qr);
return query(ch[i][0], ch[j][0], l, mid, ql, mid) + query(ch[i][1], ch[j][1], mid+1, r, mid+1, qr);
}
int main () {
read(n), read(m), read(q), read(type);
for(int i = 1; i <= m; ++i) {
read(u[i]), read(v[i]);
if(u[i] == v[i]) rt[i] = rt[i-1];
else {
if(LCT::judge(u[i], v[i])) {
int p = LCT::findmn(u[i], v[i]);
pre[i] = p-n;
LCT::cut(u[pre[i]], p);
LCT::cut(v[pre[i]], p);
}
LCT::link(u[i], n+i);
LCT::link(v[i], n+i);
modify(rt[i], rt[i-1], 0, m, pre[i]);
}
}
int lastans = 0, x, y;
while(q--) {
read(x), read(y);
if(type) x ^= lastans, y ^= lastans;
printf("%d\n", lastans = (n - query(rt[x-1], rt[y], 0, m, 0, x-1)));
}
}

BZOJ 3514: Codechef MARCH14 GERALD07加强版 (LCT维护最大生成树+主席树)的更多相关文章

  1. BZOJ3514 Codechef MARCH14 GERALD07加强版 LCT维护最大生成树 主席树

    题面 考虑没有询问,直接给你一个图问联通块怎么做. 并查集是吧. 现在想要动态地做,那么应该要用LCT. 考虑新加进来一条边,想要让它能够减少一个联通块的条件就是现在边的两个端点还没有联通. 如果联通 ...

  2. BZOJ 3514: Codechef MARCH14 GERALD07加强版( LCT + 主席树 )

    从左到右加边, 假如+的边e形成环, 那么记下这个环上最早加入的边_e, 当且仅当询问区间的左端点> _e加入的时间, e对答案有贡献(脑补一下). 然后一开始是N个连通块, 假如有x条边有贡献 ...

  3. BZOJ 3514: Codechef MARCH14 GERALD07加强版 [LCT 主席树 kruskal]

    3514: Codechef MARCH14 GERALD07加强版 Time Limit: 60 Sec  Memory Limit: 256 MBSubmit: 1312  Solved: 501 ...

  4. [BZOJ 3514]Codechef MARCH14 GERALD07加强版 (CHEF AND GRAPH QUERIES)

    [BZOJ3514] Codechef MARCH14 GERALD07加强版 (CHEF AND GRAPH QUERIES) 题意 \(N\) 个点 \(M\) 条边的无向图,\(K\) 次询问保 ...

  5. BZOJ 3514: Codechef MARCH14 GERALD07加强版(LCT + 主席树)

    题意 \(N\) 个点 \(M\) 条边的无向图,询问保留图中编号在 \([l,r]\) 的边的时候图中的联通块个数. \(K\) 次询问强制在线. \(1\le N,M,K \le 200,000\ ...

  6. 【刷题】BZOJ 3514 Codechef MARCH14 GERALD07加强版

    Description N个点M条边的无向图,询问保留图中编号在[l,r]的边的时候图中的联通块个数. Input 第一行四个整数N.M.K.type,代表点数.边数.询问数以及询问是否加密. 接下来 ...

  7. BZOJ 3514 Codechef MARCH14 GERALD07加强版 Link-Cut-Tree+划分树

    题目大意: 给定n个点m条边的无向图.求问当图中仅仅有[编号在[l,r]区间内]的边存在时图中的联通块个数 强制在线 注意联通块是指联通了就是同一块,不是Tarjan求的那种块 看到这题的那一刻我就想 ...

  8. BZOJ 3514 Codechef MARCH14 GERALD07加强版

    题目链接:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3514 题意:给出一个图m条边.每次询问只加入编号在区间[L,R]之内的边有多少连通 ...

  9. [BZOJ3514]CodeChef MARCH14 GERALD07加强版(LCT+主席树)

    3514: Codechef MARCH14 GERALD07加强版 Time Limit: 60 Sec  Memory Limit: 256 MBSubmit: 2177  Solved: 834 ...

随机推荐

  1. 我学会了正确的dinic

    以前写Isap的时候,总是被卡,然后学了一发Isap的当前弧优化,好像可以水过很多题 但是一直没明白为啥Isap会走一个环??? 然后写dinic了,听说不容易被卡(来自去年九省联考的指导) 然而-- ...

  2. Prime Number(CodeForces-359C)【快速幂/思维】

    题意:已知X,数组arr[n],求一个分式的分子与分母的最大公因数.分子为ΣX^arr[i],分母为X^Σarr[i],数组为不递减序列. 思路:比赛的时候以为想出了正确思路,WA掉了很多发,看了别人 ...

  3. pthread_cancel 相关

    假设线程A对线程B发出了一个取消请求.通过如下函数: #include <pthread.h> int pthread_cancel(pthread_t thread); 参数: thre ...

  4. Zynq-7000 MiZ701 SOC硬件使用手册

    一.整体概述 4 二.应用领域及人群 4 三.硬件配置 4 BANK资源分配 6 四.MiZ701开发板功能描述 7 4.1 全编程SOC(All Programmable SoC) 7 4.2 内存 ...

  5. luogu题解 P4092 【[HEOI2016/TJOI2016]树】树链剖分

    题目链接: https://www.luogu.org/problemnew/show/P4092 瞎扯--\(O(Q \log^3 N)\)解法 这道先yy出了一个\(O(Q \log^3 N)\) ...

  6. [转载]IMDB文件格式

    [转载]IMDB文件格式 来源:LMDB的全称是Lightning Memory-Mapped Database,闪电般的内存映射数据库.它文件结构简单,一个文件夹,里面一个数据文件,一个锁文件.数据 ...

  7. Node.js Express项目搭建

    讲干货,不啰嗦,Express 是一个简洁而灵活的 node.js Web应用框架,使用 Express 可以快速地搭建一个完整功能的网站.本教程介绍如何从零开始搭建Express项目. 开发环境:w ...

  8. tomcat 的配置文件server.xml 几个端口的作用

    tomcat中server.xml配置文件中几个port的作用和区别 在tomcat的server.xml中有这么几个port,很多人虽然一直在使用tomcat,但是却不知道这几个port各有什么作用 ...

  9. C#【堆与栈 值类型 引用类型】

    先说C#中值类型和引用类型 概念: 1.值类型:数据存储在内存的堆栈中,从堆栈中可以快速地访问这些数据,因此,值类型表示实际的数据. 2.引用类型:表示指向存储在内存堆中的数据的指针或引用(包括类.接 ...

  10. python读取ubuntu系统磁盘挂载情况

    磁盘挂载 利用df -h  的命令 此功能主要实现了python 命令行执行函数进行解析df 返回的数据   代码如下 : # liunx 系统获取 磁盘挂载的情况 代码 #!/usr/bin/pyt ...