Luogu P4198 楼房重建 分块 or 线段树
思路:分块
提交:2次(第一次的求解有问题)
题解:
设块长为$T$,我们开$N/T$个单调栈,维护每一块的上升斜率。
修改时暴力重构整个块,$O(T)$
求解时记录一个最大斜率$lst$,然后块内二分,求出能看见几个,同时更新$lst$
时间复杂度$O(N*(T+\frac{N}{T}*log_2T)$,也不知道怎么算最小值,瞎猜$T=\sqrt{N*log_2N}$(其实当时算了一下,现在发现算错了,就当是猜的吧$qwq$),后来试了试,定块长$1000$也可以。
#include<cstdio>
#include<iostream>
#include<cmath>
using namespace std;
#define R register int
#define ull unsigned long long
#define ll long long
#define pause (for(R i=1;i<=10000000000;++i))
#define In freopen("NOIPAK++.in","r",stdin)
#define Out freopen("out.out","w",stdout)
namespace Fread {
static char B[<<],*S=B,*D=B;
#ifndef JACK
#define getchar() (S==D&&(D=(S=B)+fread(B,1,1<<15,stdin),S==D)?EOF:*S++)
#endif
inline int g() {
R ret=,fix=; register char ch; while(!isdigit(ch=getchar())) fix=ch=='-'?-:fix;
if(ch==EOF) return EOF; do ret=ret*+(ch^); while(isdigit(ch=getchar())); return ret*fix;
} inline bool isempty(const char& ch) {return (ch<=||ch>=);}
inline void gs(char* s) {
register char ch; while(isempty(ch=getchar()));
do *s++=ch; while(!isempty(ch=getchar()));
}
} using Fread::g; using Fread::gs; namespace Luitaryi {
const int N=;
int n,m,T;
int pos[N],l[],r[];
double a[N];
struct STK {
double stk[]; int top;
inline int calc(double x) {
R l=,r=top+;
while(l<r) {
R md=l+r>>;
if(stk[md]<=x) l=md+; else r=md;
}
return top+-l;
}
}s[];
inline void main() {
n=g(),m=g(); T=sqrt(n*log2(n));
for(R i=;i<=n;++i) pos[i]=(i-)/T+;
for(R i=,lim=pos[n];i<=lim;++i) l[i]=(i-)*T+;
for(R i=,lim=pos[n];i<lim;++i) r[i]=i*T; r[pos[n]]=min(pos[n]*T,n);
while(m--) { R ans=;
R x=g(),y=g(); R p=pos[x];
a[x]=1.0*y/x; s[p].top=;
for(R i=l[p],lim=r[p];i<=lim;++i)
s[p].stk[s[p].top]<a[i]?s[p].stk[++s[p].top]=a[i]:;
register double lst=0.0;
for(R i=;i<=pos[n];++i)
ans+=s[i].calc(lst),lst=max(lst,s[i].stk[s[i].top]);
printf("%d\n",ans);
}
}
}
signed main() {
Luitaryi::main();
}
线段树的先咕着$QwQ$
2019.07.20
Luogu P4198 楼房重建 分块 or 线段树的更多相关文章
- Luogu P4198 楼房重建 (李超线段树)
题目 传送门 题解 首先转化成到(0,0)(0,0)(0,0)的斜率. 那么就是求多少个点是前缀最大值. 做法是线段树,用gao(i,x)gao(i,x)gao(i,x)表示在iii区间内,之前最大值 ...
- 洛谷P4198 楼房重建 单调栈+线段树
正解:单调栈+线段树 解题报告: 传送门! 首先考虑不修改的话就是个单调栈板子题昂,这个就是 然后这题的话,,,我怎么记得之前考试好像有次考到了类似的题目昂,,,?反正我总觉着这方法似曾相识的样子,, ...
- 洛谷P4198 楼房重建 (分块)
洛谷P4198 楼房重建 题目描述 小A的楼房外有一大片施工工地,工地上有N栋待建的楼房.每天,这片工地上的房子拆了又建.建了又拆.他经常无聊地看着窗外发呆,数自己能够看到多少栋房子. 为了简化问题, ...
- luogu P4198 楼房重建——线段树
题目大意: 小A在平面上(0,0)点的位置,第i栋楼房可以用一条连接(i,0)和(i,Hi)的线段表示,其中Hi为第i栋楼房的高度.如果这栋楼房上任何一个高度大于0的点与(0,0)的连线没有与之前的线 ...
- [Luogu P4198]楼房重建(线段树)
题目描述 小A的楼房外有一大片施工工地,工地上有N栋待建的楼房.每天,这片工地上的房子拆了又建.建了又拆.他经常无聊地看着窗外发呆,数自己能够看到多少栋房子. 为了简化问题,我们考虑这些事件发生在一个 ...
- 【题解】Luogu P4198 楼房重建
原题传送门 根据斜率来建线段树,线段树维护区间最大斜率以及区间内能看见的楼房的数量(不考虑其他地方的原因,两个节点合并时再考虑) 细节见程序 #include <bits/stdc++.h> ...
- [Luogu] P4198 楼房重建
题目描述 小A的楼房外有一大片施工工地,工地上有N栋待建的楼房.每天,这片工地上的房子拆了又建.建了又拆.他经常无聊地看着窗外发呆,数自己能够看到多少栋房子. 为了简化问题,我们考虑这些事件发生在一个 ...
- 洛谷 P4198 楼房重建 线段树维护单调栈
P4198 楼房重建 题目链接 https://www.luogu.org/problemnew/show/P4198 题目描述 小A的楼房外有一大片施工工地,工地上有N栋待建的楼房.每天,这片工地上 ...
- P4198 楼房重建
P4198 楼房重建 集中写博客= = 首先把高度变成斜率 然后就比较玄学了,首先用线段树维护一个区间的斜率最大值,和只看这个区间时能看见的楼房个数ans 然后更新时先更新max,再处理神奇的ans ...
随机推荐
- Python解Leetcode: 226. Invert Binary Tree
leetcode 226. Invert Binary Tree 倒置二叉树 思路:分别倒置左边和右边的结点,然后把根结点的左右指针分别指向右左倒置后返回的根结点. # Definition for ...
- Linux系列(12)之例行工作调度
你知道工作调度有哪几种吗? 你知道在进行工作调度时需要哪些服务在运行吗? 你知道突发性工作调度的指令at的用法吗? 知道如何管理at的工作调度吗? 知道at指令进行工作调度的原理吗? 知道什么是背景任 ...
- 剑指offer24:二叉树中和为输入整数值的所有路径。(注意: 在返回值的list中,数组长度大的数组靠前)
1 题目描述 输入一颗二叉树的根节点和一个整数,打印出二叉树中结点值的和为输入整数的所有路径.路径定义为从树的根结点开始往下一直到叶结点所经过的结点形成一条路径.(注意: 在返回值的list中,数组长 ...
- Docker 容器学习笔记
Docker 诞生于2013年,最初发起者是dotCloud公司.Docker自开源后受到广泛的关注和讨论,目前已有多个相关项目逐渐形成了围绕Docker容器的生态体系,由于Docker在业界造成的影 ...
- C++反汇编第二讲,反汇编中识别虚表指针,以及指向的虚函数地址
讲解之前,了解下什么是虚函数,什么是虚表指针,了解下语法,(也算复习了) 开发知识为了不码字了,找了一篇介绍比较好的,这里我扣过来了,当然也可以看原博客链接: http://blog.csdn.net ...
- 钉钉微应用内置浏览器js缓存清理
html中引用的js文件加上版本号,如下: <script type="text/javascript" src="js/xxx.js?version=1.0.1& ...
- LeetCode:197.上升的温度
题目链接:https://leetcode-cn.com/problems/rising-temperature/ 题目 给定一个 Weather 表,编写一个 SQL 查询,来查找与之前(昨天的)日 ...
- bash shell脚本之查看当前日期以及登陆用户
查看当前日期以及登陆用户: cat test1: #!/bin/bash # This script displays the date and who's logged on echo -n The ...
- SpringBoot定时任务(schedule、quartz)
Scheduled 只适合处理简单的计划任务,不能处理分布式计划任务.优势:是spring框架提供的计划任务,开发简单,执行效率比较高.且在计划任务数量太多的时候,可能出现阻塞,崩溃,延迟启动等问题. ...
- Java基础加强-日志
/*日志*/ 从功能上来说,日志API本身所需求的功能非常简单,只需要能够记录一段文本即可 API的使用者在需要记录时,根据当前的上下文信息构造出相应的文本信息,调用API完成记录.一般来说,日志AP ...