牛券Cow Coupons
USACO12FEB
久违的奶牛题。
题意:
FJ准备买一些新奶牛,市场上有 $ N $ 头奶牛 $ (1 \leq N \leq 50000) $ ,第i头奶牛价格为 $ P_i (1 \leq P_i \leq 10^9) $ 。FJ有K张优惠券,使用优惠券购买第i头奶牛时价格会降为 $ C_i(1\leq C_i \leq P_i) $ ,每头奶牛只能使用一次优惠券。FJ想知道花不超过 $ M(1 \leq M \leq 10^{14}) $ 的钱最多可以买多少奶牛?
解法:
在ZR时摸鱼王讲的一道贪心题。
但这道题并不是一道裸贪心,直接对 $ C $ 排序,取前 $ k $ 个数并不完全对,具体为什么自己想想。
正确的做法依旧是贪心,不过是可以反悔的贪心。
我们优先处理使用优惠券之后最便宜的几头牛,然后选择剩下的牛中不用券最便宜的,之后判断要不要将用过的一张券转用给一头新的牛。
具体做法就是开一个大根堆,每次维护 $ price_i - cost_i $ 就可以了。
CODE:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
#define LL long long
#define N 50010
LL n,k,m;
struct cow {
LL price,cost;
} node[N];
inline bool cmp1(cow a,cow b) {
return a.cost < b.cost;
}
inline bool cmp2(cow a,cow b) {
return a.price < b.price;
}
priority_queue<LL,vector<LL>,greater<LL> > q;
int main() {
scanf("%lld%lld%lld",&n,&k,&m);
for(int i = 1 ; i <= n ; i++)
scanf("%lld%lld",&node[i].price,&node[i].cost);
sort(node + 1,node + n + 1,cmp1);
LL sum = 0;
for(int i = 1 ; i <= k ; i++) {
sum += node[i].cost;
if(sum > m) {
printf("%d \n",i - 1);
//system("pause");
return 0;
}
q.push(node[i].price - node[i].cost);
}
sort(node + k + 1,node + n + 1,cmp2);
for(int i = k + 1 ; i <= n ; i++) {
int u = node[i].price - node[i].cost;
if(u > q.top()) {
sum += q.top();
q.pop();
q.push(u);
sum += node[i].cost;
}
else sum += node[i].price;
if(sum > m) {
printf("%d \n",i - 1);
//system("pause");
return 0;
}
}
printf("%lld \n",n);
//system("pause");
return 0;
}
牛券Cow Coupons的更多相关文章
- 洛谷P3045 [USACO12FEB]牛券Cow Coupons
P3045 [USACO12FEB]牛券Cow Coupons 71通过 248提交 题目提供者洛谷OnlineJudge 标签USACO2012云端 难度提高+/省选- 时空限制1s / 128MB ...
- [USACO12FEB]牛券Cow Coupons(堆,贪心)
[USACO12FEB]牛券Cow Coupons(堆,贪心) 题目描述 Farmer John needs new cows! There are N cows for sale (1 <= ...
- LuoguP3045牛券Cow Coupons
LuoguP3045 [USACO12FEB]牛券Cow Coupons 果然我贪心能力还是太差了 ZR讲过的原题我回来对做法没有一丁点印象 有时候有这样一种题目 每个数有两种不同的价值 你可以选择价 ...
- P3045 [USACO12FEB]牛券Cow Coupons
P3045 [USACO12FEB]牛券Cow Coupons 贪心题.先选中 \(c_i\) 最小的 \(k\) 头牛,如果这样就超过 \(m\) ,直接退出,输出答案.否则考虑把后面的牛依次加入, ...
- [USACO12FEB]牛券Cow Coupons
嘟嘟嘟 这其实是一道贪心题,而不是dp. 首先我们贪心的取有优惠券中价值最小的,并把这些东西都放在优先队列里,然后看[k + 1, n]中,有些东西使用了优惠券减的价钱是否比[1, k]中用了优惠券的 ...
- [Usaco2012 Feb] Cow Coupons
[Usaco2012 Feb] Cow Coupons 一个比较正确的贪心写法(跑得贼慢...) 首先我们二分答案,设当前答案为mid 将序列按照用券之后能省掉的多少排序,那么我们对于两种情况 \(m ...
- P2877 [USACO07JAN]牛校Cow School(01分数规划+决策单调性分治)
P2877 [USACO07JAN]牛校Cow School 01分数规划是啥(转) 决策单调性分治,可以解决(不限于)一些你知道要用斜率优化却不会写的问题 怎么证明?可以暴力打表 我们用$ask(l ...
- bzoj1638 / P2883 [USACO07MAR]牛交通Cow Traffic
P2883 [USACO07MAR]牛交通Cow Traffic 对于每一条边$(u,v)$ 设入度为0的点到$u$有$f[u]$种走法 点$n$到$v$(通过反向边)有$f2[v]$种走法 显然经过 ...
- P3014 [USACO11FEB]牛线Cow Line && 康托展开
康托展开 康托展开为全排列到一个自然数的映射, 空间压缩效率很高. 简单来说, 康托展开就是一个全排列在所有此序列全排列字典序中的第 \(k\) 大, 这个 \(k\) 即是次全排列的康托展开. 康托 ...
随机推荐
- c# 图文添加文字斜水印 优化
之前一篇给图片加水印的功能,加出来水印的图片位置有一点问题,并且如果图片分辨率有变动的话,水印会有层次不齐的问题. 目前只能优化到增加一条居中显示的斜水印,在不同分辨率不同大小的图片中,都能保证文字水 ...
- 异常:Invalid character found in the request target. The valid characters are defined in RFC 3986
一.背景 事情是这样的,前几天做一个基本的数据库“增删改查”的需求,前端传参的方式是“JSON字符串”,后端接收到此参数后,使用阿里巴巴fastjson进行解析,然后入库.需求很简单吧,但是偏偏遇到问 ...
- C调用C++(C++封装以及C对其调用)
C调用C++(C++封装以及C对其调用) 来源 https://blog.csdn.net/wonengguwozai/article/details/89854781 相关知识提点:很经典的exte ...
- Oracle学习笔记:rank、dense_rank、row_number、ntile等排序算法
在 oracle 中有很多函数可以实现排序的功能,但是不尽相同.下面一一解说. row_number函数 功能:可实现分组排序,为数据行添加序号,多用于分页查询. 语法:row_number() ov ...
- K2 BPM_如何将RPA的价值最大化?_全球领先的工作流引擎
自动化技术让企业能够更有效的利用资源,减少由于人为失误而造成的风险损失.随着科技的进步,实现自动化的途径变得更加多样化. 据Forrester预测,自动化技术将在2019年成为引领数字化转型的前沿技 ...
- 8.Mapper动态代理
在前面例子中自定义 Dao 接口实现类时发现一个问题:Dao 的实现类其实并没有干什么 实质性的工作, 它仅仅就是通过 SqlSession 的相关 API 定位到映射文件 mapper 中相应 id ...
- 【ASE高级软件工程】第一次结对作业
问题定义 具体规则见:讲义.大致规则如下: N个同学(N通常大于10),每人写一个0~100之间的有理数 (不包括0或100),交给裁判,裁判算出所有数字的平均值,然后乘以0.618(所谓黄金分割常数 ...
- ngnix反向代理后获取用户真实ip及https配置
server {listen 80;listen 802;server_name test111.xxxx.com 118.24.122.101; gzip on;gzip_min_length 10 ...
- RabbitMQ 功能
学习完了rabbitmq总一下 RabbitMQ依赖的语言 erlang 第一它可以实现不同程序之间的程序信息储存交互,在易用性.扩展性.高可用性的方面不俗. rabbitmq相当于一个中间人,我们同 ...
- VSCODE IDE开发工具的快捷键一览
按 Press 功能 Function Ctrl + Shift + P,F1 显示命令面板 Show Command Palette Ctrl + P 快速打开 Quick Open Ctrl + ...