【LOJ】#3031. 「JOISC 2019 Day1」聚会
LOJ#3031. 「JOISC 2019 Day1」聚会
听说随机可过?
我想了很久想了一个不会被卡的做法,建出前\(u - 1\)个点的虚树,然后找第\(u\)个点的插入位置,就是每次找一条最长链,询问链的两个端点和u的虚树,如果u在链上那么二分找出u的位置,如果u不在链上且和链相连的点不在链上,那么建出那个点然后连上u,否则删除整条链,保留与u相连的那个点,继续这个操作
二分的代价应该最多是11,每次差不多删掉两个儿子是18/2 = 9
然而这个上限肯定跑不到,最后实测操作次数最多的数据点是21000+,有几个点19000,更多的在10000左右
还有一个2000的点跑了1998不知道发生了什么
#include "meetings.h"
#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int,int>
#define mp make_pair
#define pb push_back
#define space putchar(' ')
#define enter putchar('\n')
#define eps 1e-10
#define MAXN 2005
#define ba 47
//#define ivorysi
using namespace std;
typedef long long int64;
typedef unsigned int u32;
typedef double db;
template<class T>
void read(T &res) {
res = 0;T f = 1;char c = getchar();
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 +c - '0';
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {x = -x;putchar('-');}
if(x >= 10) {
out(x / 10);
}
putchar('0' + x % 10);
}
set<int> to[2005];
bool vis[2005],finish[2005];
int dep[2005],S,T,fa[2005];
vector<int> v,line;
void getpos(int u,int fa) {
v.pb(u);
for(auto v : to[u]) {
if(vis[v]) continue;
if(v != fa) getpos(v,u);
}
}
void dfs(int u) {
for(auto v : to[u]) {
if(v != fa[u]) {
dep[v] = dep[u] + 1;
fa[v] = u;
dfs(v);
}
}
}
void getpara(int p) {
v.clear();
getpos(p,-1);
dep[p] = 0;fa[p] = -1;
dfs(p);
S = p;
for(auto t : v) {
if(dep[t] > dep[S]) S = t;
}
dep[S] = 0;fa[S] = -1;
dfs(S);
T = p;
for(auto t : v) {
if(dep[t] > dep[T]) T = t;
}
}
void pass_line(int a,int b) {
dep[a] = 0;fa[a] = -1;
dfs(a);
int p = b;
while(1) {
vis[p] = 1;
if(p == a) break;
p = fa[p];
}
}
void getline(int a,int b) {
line.clear();
dep[a] = 0;fa[a] = -1;
dfs(a);
int p = b;
while(1) {
line.pb(p);
if(p == a) break;
p = fa[p];
}
}
void build(int u) {
memset(vis,0,sizeof(vis));
finish[u] = 1;
int p = 0;
while(1) {
getpara(p);
if(S == T) {
to[S].insert(u);to[u].insert(S);break;
}
int m = Query(u,S,T);
getline(S,T);
bool f = 0;
for(auto v : line) {
if(v == m) {f = 1;break;}
}
if(!f && m != u) {
build(m);to[m].insert(u);to[u].insert(m);break;
}
if(m == S) {to[u].insert(S);to[S].insert(u);break;}
if(m == T) {to[u].insert(T);to[T].insert(u);break;}
if(m == u) {
int l = 1,r = line.size() - 1;
while(l < r) {
int mid = (l + r) >> 1;
if(Query(u,line[mid],line[0]) == u) r = mid;
else l = mid + 1;
}
int a = line[r],b = line[r - 1];
to[b].erase(a);to[a].erase(b);
to[b].insert(u);to[a].insert(u);
to[u].insert(a);to[u].insert(b);
break;
}
p = m;pass_line(S,T);vis[p] = 0;
}
}
void Solve(int N) {
to[0].insert(1);to[1].insert(0);
for(int i = 2 ; i < N ; ++i) {
if(!finish[i]) build(i);
}
for(int i = 0 ; i < N ; ++i) {
for(auto v : to[i]) {
if(v > i) Bridge(i,v);
}
}
}
【LOJ】#3031. 「JOISC 2019 Day1」聚会的更多相关文章
- 【LOJ】#3032. 「JOISC 2019 Day1」馕
LOJ#3032. 「JOISC 2019 Day1」馕 处理出每个人把馕切成N段,每一段快乐度相同,我们选择第一个排在最前的人分给他的第一段,然后再在未选取的的人中选一个第二个排在最前的切一下,并把 ...
- 【LOJ】#3030. 「JOISC 2019 Day1」考试
LOJ#3030. 「JOISC 2019 Day1」考试 看起来求一个奇怪图形(两条和坐标轴平行的线被切掉了一个角)内包括的点个数 too naive! 首先熟练的转化求不被这个图形包含的个数 -- ...
- @loj - 3039@ 「JOISC 2019 Day4」蛋糕拼接 3
目录 @description@ @solution@ @accepted code@ @details@ @description@ 今天是 IOI 酱的生日,所以她的哥哥 JOI 君给她预定了一个 ...
- 【LOJ】#3036. 「JOISC 2019 Day3」指定城市
LOJ#3036. 「JOISC 2019 Day3」指定城市 一个点的可以dp出来 两个点也可以dp出来 后面的就是在两个点的情况下选一条最长的链加进去,用线段树维护即可 #include < ...
- 【LOJ】#3034. 「JOISC 2019 Day2」两道料理
LOJ#3034. 「JOISC 2019 Day2」两道料理 找出最大的\(y_{i}\)使得\(sumA_{i} + sumB_{y_i} \leq S_{i}\) 和最大的\(x_{j}\)使得 ...
- 【LOJ】#3033. 「JOISC 2019 Day2」两个天线
LOJ#3033. 「JOISC 2019 Day2」两个天线 用后面的天线更新前面的天线,线段树上存历史版本的最大值 也就是线段树需要维护历史版本的最大值,后面的天线的标记中最大的那个和最小的那个, ...
- 「JOISC 2019 Day3」穿越时空 Bitaro
「JOISC 2019 Day3」穿越时空 Bitaro 题解: 不会处理时间流逝,我去看了一眼题解的图,最重要的转换就是把(X,Y)改成(X,Y-X)这样就不会斜着走了. 问题变成二维平面上 ...
- 「JOISC 2014 Day1」巴士走读
「JOISC 2014 Day1」巴士走读 将询问离线下来. 从终点出发到起点. 由于在每个点(除了终点)的时间被过来的边固定,因此如果一个点不被新的边更新,是不会发生变化的. 因此可以按照时间顺序, ...
- 「JOISC 2014 Day1」 历史研究
「JOISC 2014 Day1」 历史研究 Solution 子任务2 暴力,用\(cnt\)记录每种权值出现次数. 子任务3 这不是一个尺取吗... 然后用multiset维护当前的区间,动态加, ...
随机推荐
- vue-cli3构建多页面应用2.0
1.0版本点这里 -> 博客:vue-cli3构建多页面应用1.0 github:vue-cli-multipage 在1.0版本上做了以下改进: 1. 增加pages.config.js, ...
- Python 通过文件名批量移动文件
Python 通过文件名批量移动文件 https://stackoverflow.com/questions/28913088/moving-files-with-wildcards-in-pytho ...
- Python中的函数递归思想,以及对比迭代和递归解决Fibonacci数列
什么是递归?简单的说就是:函数自身调用自身. “普通程序员用迭代,天才程序员用递归” 虽然递归 在运行时会不断出栈压栈,调用底层的寄存器,造成空间上的占用以及时间上的缓慢, 但在一些算法上面仍然是递归 ...
- socketserver(多连接)
正如前面的socket模块部分看到的一样,写一个简单套接字服务器不是很难,如果想实现超出继承的应用,最好寻求一些帮助,socketserver模块是标准库中很多服务器框架的基础,这些服务器架构包括Ba ...
- 计算可迭代对象的shape 老是忘~方便记法
import numpy as np bbox =[ [[6.37532410e+02,3.83636505e+02,7.04683777e+02,4.43150146e+02, 6.23311400 ...
- SpringMVC 请求映射注解
@GetMapping: 处理get请求,传统的RequestMapping来编写应该是@RequestMapping(value = “/get/{id}”, method = RequestMet ...
- centos7下面安装tomcat
前言 对于一个新安装的 centos 系统来说,是没有 tomcat 服务器的.用下面的命令可以查看 tomcat 服务的状态. systemctl status tomcat.service//或者 ...
- Leetcode题目98.验证二叉搜索树(递归-中等)
题目描述: 给定一个二叉树,判断其是否是一个有效的二叉搜索树. 假设一个二叉搜索树具有如下特征: 节点的左子树只包含小于当前节点的数.节点的右子树只包含大于当前节点的数.所有左子树和右子树自身必须也是 ...
- gitolite 代码访问控制
gitolite可用于代码访问控制,这里汇总一下git相关的内容. git quick start:创建git仓库 TortoiseGit:可视化git操作 egit eclipse插件:新版的IDE ...
- ps 证件照制作
自己制作证件照,再通过印鸽等服务打印邮寄,个人感觉还是比较方便实惠. 使用ps的定义图案和填充功能(ps精简版) 定义图案 1,打开1寸照片 2,图像=>图像大小,可选去掉约束比例 1寸:2.5 ...