传送门

Description

给出 n 个点和 n−1 种颜色,每种颜色有若干条边。求这张图多少棵每种颜色的边都出现过的生成树,答案对 109+7 取模。

Input

第一行包含一个正整数 N(N<=17), 表示城市个数。

接下来 N-1 行,其中第 i行表示第 i个建筑公司可以修建的路的列表:

以一个非负数mi 开头,表示其可以修建 mi 条路,接下来有mi 对数,

每对数表示一条边的两个端点。其中不会出现重复的边,也不会出现自环。

Output

输出一行一个整数,表示所有可能的方案数对 10^9+7 取模的结果。

Sample Input

4

2 3 2 4 2

5 2 1 3 1 3 2 4 1 4 3

4 2 1 3 2 4 1 4 2

Sample Output

17

Solution

随意选的-一个颜色不选+两个颜色不选。。。

暴力枚举所有情况求出生成树个数统计到答案中即可

Code

//By Menteur_Hxy
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define F(i,a,b) for(register int i=(a);i<=(b);i++)
using namespace std;
typedef long long LL; int read() {
int x=0,f=1; char c=getchar();
while(!isdigit(c)) {if(c=='-')f=-f;c=getchar();}
while(isdigit(c)) x=(x<<1)+(x<<3)+c-48,c=getchar();
return x*f;
} const int MOD=1000000007;
bool vis[20];
int n,m[20];
int vx[20][400],vy[20][400];
LL ans,ma[20][20]; LL qpow(LL a,LL b) {
LL t=1;
while(b) {
if(b&1) t=t*a%MOD;
a=a*a%MOD; b>>=1;
}
return t;
} void dfs(int x,int flag) {
if(x==n) {
memset(ma,0,sizeof(ma));
LL now=1,ret;
F(i,1,n-1) if(vis[i])
F(j,1,m[i]) ma[vx[i][j]][vx[i][j]]++,ma[vy[i][j]][vy[i][j]]++,
ma[vx[i][j]][vy[i][j]]--,ma[vy[i][j]][vx[i][j]]--;
int i,j,k;
for(i=2;i<=n;i++) {
for(j=i;j<=n;j++) if(ma[j][i]) break;
if(j>n) break;
if(j!=i) {
flag=-flag;
F(k,i,n) swap(ma[i][k],ma[j][k]);
}
now=now*ma[i][i]%MOD; ret=qpow(ma[i][i],MOD-2);
for(j=i;j<=n;j++) ma[i][j]=ma[i][j]*ret%MOD;
for(j=i+1;j<=n;j++) for(ret=ma[j][i],k=i;k<=n;k++)
ma[j][k]=(ma[j][k]-ret*ma[i][k]%MOD+MOD)%MOD;
}
if(i>n) ans=(ans+flag*now+MOD)%MOD;
return ;
}
vis[x]=1; dfs(x+1,flag);
vis[x]=0; dfs(x+1,-flag);
} int main() {
n=read();
F(i,1,n-1) {
m[i]=read();
F(j,1,m[i]) vx[i][j]=read(),vy[i][j]=read();
}
dfs(1,1);
printf("%lld",ans);
return 0;
}

[luogu3244 SHOI2016] 黑暗前的幻想乡(容斥原理+矩阵树定理)的更多相关文章

  1. 【bzoj4596】[Shoi2016]黑暗前的幻想乡 容斥原理+矩阵树定理

    题目描述 给出 $n$ 个点和 $n-1$ 种颜色,每种颜色有若干条边.求这张图多少棵每种颜色的边都出现过的生成树,答案对 $10^9+7$ 取模. 输入 第一行包含一个正整数 N(N<=17) ...

  2. luoguP4336 [SHOI2016]黑暗前的幻想乡 容斥原理 + 矩阵树定理

    自然地想到容斥原理 然后套个矩阵树就行了 求行列式的时候只有换行要改变符号啊QAQ 复杂度为\(O(2^n * n^3)\) #include <cstdio> #include < ...

  3. 【bzoj4596】[Shoi2016]黑暗前的幻想乡 (矩阵树定理+容斥)

    Description 四年一度的幻想乡大选开始了,最近幻想乡最大的问题是很多来历不明的妖怪涌入了幻想乡,扰乱了幻想乡昔日的秩序.但是幻想乡的建制派妖怪(人类)博丽灵梦和八云紫等人整日高谈所有妖怪平等 ...

  4. 【BZOJ4596】黑暗前的幻想乡(矩阵树定理,容斥)

    [BZOJ4596]黑暗前的幻想乡(矩阵树定理,容斥) 题面 BZOJ 有\(n\)个点,要求连出一棵生成树, 指定了一些边可以染成某种颜色,一共\(n-1\)种颜色, 求所有颜色都出现过的生成树方案 ...

  5. bzoj4596[Shoi2016]黑暗前的幻想乡 Matrix定理+容斥原理

    4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 464  Solved: 264[Submit][Sta ...

  6. 【BZOJ 4596】 4596: [Shoi2016]黑暗前的幻想乡 (容斥原理+矩阵树定理)

    4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 324  Solved: 187 Description ...

  7. P4336 [SHOI2016]黑暗前的幻想乡

    P4336 [SHOI2016]黑暗前的幻想乡 矩阵树定理(高斯消元+乘法逆元)+容斥 ans=总方案数 -(公司1未参加方案数 ∪ 公司2未参加方案数 ∪ 公司3未参加方案数 ∪ ...... ∪ ...

  8. 【BZOJ4596】[Shoi2016]黑暗前的幻想乡 容斥+矩阵树定理

    [BZOJ4596][Shoi2016]黑暗前的幻想乡 Description 幽香上台以后,第一项措施就是要修建幻想乡的公路.幻想乡有 N 个城市,之间原来没有任何路.幽香向选民承诺要减税,所以她打 ...

  9. bzoj 4596 [Shoi2016]黑暗前的幻想乡 矩阵树定理+容斥

    4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 559  Solved: 325[Submit][Sta ...

随机推荐

  1. POJ 3748:位操作

    位操作 Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8964   Accepted: 3581 Description 如 ...

  2. Java怎样获取Content-Type的文件类型Mime Type

    在Http请求中.有时须要知道Content-Type类型,尤其是上传文件时.更为重要.尽管有些办法可以解决,但都不太准确或者繁琐,索性我发现一个开源的类库可以解决相对完美的解决问题,它就是jMime ...

  3. 计算cost--全表扫描

    以下教大家怎样手工算出oracle运行计划中的cost值. 成本的计算方式例如以下: Cost = (        #SRds * sreadtim +        #MRds * mreadti ...

  4. Ubuntu Linux 安装 .7z 解压和压缩文件

    安装方法: sudo apt-get install p7zip 解压文件: 7z x manager.7z -r -o /home/xx解释如下:x 代表解压缩文件,并且是按原始目录解压(还有个参数 ...

  5. Android 系统开机logo的修改【转】

    本文转载自:http://blog.csdn.net/yandongqiangZHRJ/article/details/8585273 看到了好几个修改logo的博文,但是说的不是很清楚,在这里亲手送 ...

  6. pattern matching is C# 7.0

    https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/is 原来的版本 private static s ...

  7. 【撸码caffe 五】数据层搭建

    caffe.cpp中的train函数内声明了一个类型为Solver类的智能指针solver: // Train / Finetune a model. int train() { -- shared_ ...

  8. Newtonsoft.Json 序列化日期问题解决

    上代码 其中的使用方法和UserInfo实体对象就不贴代码了. /// <summary> /// 把对象转成json字符串 /// </summary> /// <pa ...

  9. Java压缩技术(一) ZLib

    原文:http://snowolf.iteye.com/blog/465433 有关ZLib可参见官方主页 http://www.zlib.net/ ZLib可以简单的理解为压缩/解压缩算法,它与ZI ...

  10. E20170809-mk

    collapse   n. 垮台; (身体的) 衰弱;               vt. 使倒塌; 使坍塌; 使瓦解;                vi. 崩溃; 倒塌; 折叠; (尤指工作劳累后 ...