建图:源点—>边的起点(集合1中的)—>边的终点(集合2中的)—>汇点,所有边权均为1,

计算最大流,最后枚举起点的出边,边权为0的即为匹配上的,

可以这样理解:每条边表示起点和终点形成一组可选匹配,所以每个点只能被匹配1次(做起点和终点分别1次),所以可以看成是二分图匹配。

代码略丑:

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <ctime>
#include <algorithm>
#include <queue> using namespace std; template<const int _n>
struct Edge
{
struct Edge_base { int to,next,w; }e[_n];
int cnt,p[_n];
Edge() { clear(); }
int start(const int x) { return p[x]; }
void insert(const int x,const int y,const int z)
{ e[++cnt].to=y; e[cnt].next=p[x]; e[cnt].w=z; p[x]=cnt; return ; }
Edge_base& operator[](const int x) { return e[x]; }
void clear() { cnt=,memset(p,,sizeof(p)); }
}; int n,m,SSS,TTT,Ans;
int level[],cur[],Out[],to[],from[];
bool visited[];
Edge<> e; bool Bfs(const int S)
{
int i,t;
queue<int> Q;
memset(level,,sizeof(level));
level[S]=;
Q.push(S);
while(!Q.empty())
{
t=Q.front();Q.pop();
for(i=e.start(t);i;i=e[i].next)
{
if(!level[e[i].to] && e[i].w)
{
level[e[i].to]=level[t]+;
Q.push(e[i].to);
}
}
}
return level[TTT];
} int Dfs(const int S,const int bk)
{
if(S==TTT)return bk;
int rest=bk;
for(int &i=cur[S];i;i=e[i].next)
{
if(level[e[i].to]==level[S]+ && e[i].w)
{
int flow=Dfs(e[i].to,min(e[i].w,rest));
e[i].w-=flow;
e[i^].w+=flow;
if((rest-=flow)<=)break;
}
}
if(bk==rest)level[S]=;
return bk-rest;
} int Dinic()
{
int flow=;
while(Bfs(SSS))
{
memcpy(cur,e.p,sizeof(int)*(n+n+));
flow+=Dfs(SSS,0x3f3f3f3f);
}
return flow;
} int main()
{
freopen("path3.in","r",stdin);
freopen("path3.out","w",stdout);
int i,j,x,y; scanf("%d%d",&n,&m);
for(i=;i<=m;++i)
{
scanf("%d%d",&x,&y);
e.insert(x,y+n,);
e.insert(y+n,x,);
Out[x]++;
} SSS=n+n+,TTT=n+n+;
for(i=;i<=n;++i)
{
e.insert(SSS,i,);
e.insert(i,SSS,);
e.insert(i+n,TTT,);
e.insert(TTT,i+n,);
} Dinic(); for(i=e.start(SSS);i;i=e[i].next)
{
if(e[i].w)continue;
for(j=e.start(e[i].to);j;j=e[j].next)
{
if(e[j].to!=SSS && !e[j].w)
{
to[e[i].to]=e[j].to-n;
from[e[j].to-n]=e[i].to;
break;
}
}
} for(i=;i<=n;++i)
{
if(!from[i])
{
int t=i;
while(t)
{
printf("%d ",t);
t=to[t];
}
printf("\n");
Ans++;
}
} printf("%d\n",Ans); return ;
}

匈牙利写法详见:http://www.cnblogs.com/Ngshily/p/4988909.html

[Cogs728] [网络流24题#3] 最小路径覆盖 [网络流,最大流,二分图匹配]的更多相关文章

  1. LOJ6002 - 「网络流 24 题」最小路径覆盖

    原题链接 Description 求一个DAG的最小路径覆盖,并输出一种方案. Solution 模板题啦~ Code //「网络流 24 题」最小路径覆盖 #include <cstdio&g ...

  2. LibreOJ #6002. 「网络流 24 题」最小路径覆盖

    #6002. 「网络流 24 题」最小路径覆盖 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:Special Judge 上传者: 匿名 提交提交记录统计讨论测 ...

  3. Luogu 2764 最小路径覆盖问题 / Libre 6002 「网络流 24 题」最小路径覆盖 (网络流,最大流)

    Luogu 2764 最小路径覆盖问题 / Libre 6002 「网络流 24 题」最小路径覆盖 (网络流,最大流) Description 给定有向图G=(V,E).设P是G的一个简单路(顶点不相 ...

  4. [LOJ#6002]「网络流 24 题」最小路径覆盖

    [LOJ#6002]「网络流 24 题」最小路径覆盖 试题描述 给定有向图 G=(V,E).设 P 是 G 的一个简单路(顶点不相交)的集合.如果 V 中每个顶点恰好在 P 的一条路上,则称 P 是  ...

  5. 【PowerOJ1738&网络流24题】最小路径覆盖问题 (最大流)

    题意: 思路: [问题分析] 有向无环图最小路径覆盖,可以转化成二分图最大匹配问题,从而用最大流解决. [建模方法] 构造二分图,把原图每个顶点i拆分成二分图X,Y集合中的两个顶点Xi和Yi.对于原图 ...

  6. 【刷题】LOJ 6002 「网络流 24 题」最小路径覆盖

    题目描述 给定有向图 \(G = (V, E)\) .设 \(P\) 是 \(G\) 的一个简单路(顶点不相交)的集合.如果 \(V\) 中每个顶点恰好在 \(P\) 的一条路上,则称 \(P\) 是 ...

  7. Libre 6013 「网络流 24 题」负载平衡 (网络流,最小费用最大流)

    Libre 6013 「网络流 24 题」负载平衡 (网络流,最小费用最大流) Description G 公司有n 个沿铁路运输线环形排列的仓库,每个仓库存储的货物数量不等.如何用最少搬运量可以使n ...

  8. Libre 6008 「网络流 24 题」餐巾计划 (网络流,最小费用最大流)

    Libre 6008 「网络流 24 题」餐巾计划 (网络流,最小费用最大流) Description 一个餐厅在相继的N天里,第i天需要Ri块餐巾(i=l,2,-,N).餐厅可以从三种途径获得餐巾. ...

  9. Libre 6003 「网络流 24 题」魔术球 (网络流,最大流)

    Libre 6003 「网络流 24 题」魔术球 (网络流,最大流) Description 假设有n根柱子,现要按下述规则在这n根柱子中依次放入编号为 1,2,3,4......的球. (1)每次只 ...

随机推荐

  1. 【转载】HashMap底层实现原理及面试问题

    ①HashMap的工作原理 HashMap基于hashing原理,我们通过put()和get()方法储存和获取对象.当我们将键值对传递给put()方法时,它调用键对象的hashCode()方法来计算h ...

  2. ZOJ3714JavaBeans

    #!/usr/bin/env python # encoding: utf-8 t = int(raw_input()) for i in range(t): n,k = [int(x) for x ...

  3. Flume OG 与 Flume NG 的对比

    Flume OG 与 Flume NG 的对比 1.Flume OG Flume OG:Flume original generation 即Flume 0.9.x版本,它由agent.collect ...

  4. [转]c# 对密码执行散列和 salt 运算方法

    本文转自:http://www.cnblogs.com/CnBlogFounder/archive/2008/07/04/1235690.html 大家对密码执行散列和Salt运算一定不陌生.两个Vi ...

  5. Struts2之一 初体验

    Struts2 框架是基于MV模式开发的,它提供了一个核心控制器,用于对所有的请求进行统一处理,这个控制器是由一个名为FilterDispatcher的Servlet过滤器来充当的. 01.需要在we ...

  6. Unity引擎 UGUI

    Unity UGUI讲解 1.导入UI图片资源 2.设置参数: TextureType(纹理类型) 精灵 2D and UI SpriteMode(精灵模式)  Single(单) multiple( ...

  7. 01--Java开发中文乱码问题分析

    一.常见的编码格式 1. ASCII码 总共128个字符,用1个字节的低7位表示,0~31是控制字符,32~126是打印字符. 2.  ISO-8859-1 ISO组织在ASCII基础上进行扩展,仍是 ...

  8. jQuery——this

    js注册事件this代表的dom对象 jQuery注册事件this代表的也是dom对象,所以需要$(this)转成jQuery对象

  9. JS——百度背景图

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  10. SQL基本操作——日期函数

    SQL日期:当我们处理日期时,最难的任务恐怕是确保所插入的日期的格式,与数据库中日期列的格式相匹配.只要数据包含的只是日期部分,运行查询就不会出问题.但是,如果涉及时间,情况就有点复杂了.在讨论日期查 ...