题目大意:问一个有向图是否任意两点在两个方向上互相连通。

有向图强连通分量定义:如果一个图中的任意两点在两个方向上都互相连通,则该图为强连通图。极大强连通图为有向图的强连通分量(注意是极大,不是最大。一个图会有多个强连通分量)。感性理解,强连通图就是多个环,或者一个点连接在一起所产生的图。

如何求?定义节点cur->Low,cur的子搜索树节点a中如果存在边(a,b),使得b->DfsN小于cur->DfsN,则cur->Low=min foreach b{b->DfsN},否则为cur->DfsN。显然,cur->Low所对应的节点位于cur所在极大强连通分量中,且是cur所在环中深度最浅的。

新定义一个栈维护一组节点,其使得处理完栈内节点cur以上的节点后,cur以上节点的Low <= cur->Low(它们位于cur子搜索树中的各个枝杈上(而不仅仅存在于一个枝杈中,这是系统栈所做不到的),不存在满足该条件却不在该栈内的节点),即cur及以上节点在一个强连通分量内。如果cur->Low == cur->DfsN,则cur是其所在强连通分量中深度最浅的,再往栈下面走的节点就不属于这个连通分量了,此时便可以输出连通分量,然后将cur及以上节点全部弹出。

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <vector>
using namespace std; const int MAX_NODE = 10010, MAX_EDGE = 100010; struct Node;
struct Edge; struct Node
{
int Id, DfsN, Low;
Edge *Head;
}_nodes[MAX_NODE], *Root;
int _vCount, DfsCnt; struct Edge
{
Node *From, *To;
Edge *Next;
Edge() {}
}*_edges[MAX_EDGE];
int _eCount; Edge *NewEdge()
{
_eCount++;
return _edges[_eCount] ? _edges[_eCount] : _edges[_eCount] = new Edge();
} Edge *AddEdge(Node *from, Node *to)
{
Edge *e = NewEdge();
e->From = from;
e->To = to;
e->Next = from->Head;
from->Head = e;
return e;
} vector<Node*> Stack; void Init(int vCount)
{
_vCount = vCount;
_eCount = 0;
DfsCnt = 0;
Root = 1 + _nodes;
Stack.clear();
memset(_nodes, 0, sizeof(_nodes));
} void Dfs(Node *cur)
{
cur->DfsN = cur->Low = ++DfsCnt;
Stack.push_back(cur);
for (Edge *e = cur->Head; e; e = e->Next)
{
if (!e->To->DfsN)
{
Dfs(e->To);
cur->Low = min(cur->Low, e->To->Low);
}
else
cur->Low = min(cur->Low, e->To->DfsN);
}
if (cur != Root && cur->Low == cur->DfsN)
{
while (Stack.back() != cur)
Stack.pop_back();
Stack.pop_back();
}
} int main()
{
#ifdef _DEBUG
freopen("c:\\noi\\source\\input.txt", "r", stdin);
freopen("c:\\noi\\source\\output.txt", "w", stdout);
#endif
int totNode, totEdge, uId, vId;
while (scanf("%d%d", &totNode, &totEdge) && (totNode || totEdge))
{
Init(totNode);
for (int i = 1; i <= totEdge; i++)
{
scanf("%d%d", &uId, &vId);
_nodes[uId].Id = uId;
_nodes[vId].Id = vId;
AddEdge(uId + _nodes, vId + _nodes);
}
Dfs(Root);
if (Stack.size()!=totNode)
printf("No\n");
else
printf("Yes\n");
}
return 0;
}

  

HDU1269 有向图强连通分量的更多相关文章

  1. hdu1269(有向图强连通分量)

    hdu1269 题意 判断对于任意两点是否都可以互相到达(判断有向图强连通分量个数是否为 1 ). 分析 Tarjan 算法实现. code #include<bits/stdc++.h> ...

  2. 有向图强连通分量的Tarjan算法

    有向图强连通分量的Tarjan算法 [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G ...

  3. 有向图强连通分量 Tarjan算法

    [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的极 ...

  4. 【转】有向图强连通分量的Tarjan算法

    原文地址:https://www.byvoid.com/blog/scc-tarjan/ [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly con ...

  5. 图的连通性:有向图强连通分量-Tarjan算法

    参考资料:http://blog.csdn.net/lezg_bkbj/article/details/11538359 上面的资料,把强连通讲的很好很清楚,值得学习. 在一个有向图G中,若两顶点间至 ...

  6. 有向图强连通分量的Tarjan算法和Kosaraju算法

    [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的极 ...

  7. 算法笔记_144:有向图强连通分量的Tarjan算法(Java)

    目录 1 问题描述 2 解决方案 1 问题描述 引用自百度百科: 如果两个顶点可以相互通达,则称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连 ...

  8. POJ3180(有向图强连通分量结点数>=2的个数)

    The Cow Prom Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 1451   Accepted: 922 Descr ...

  9. 有向图强连通分量的Tarjan算法及模板

    [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强联通(strongly connected),如果有向图G的每两个顶点都强联通,称有向图G是一个强联通图.非强联通图有向 ...

随机推荐

  1. 自己写的_top、_parent以及对iframe和frameset的理解

    iframe可以写在<body>标签里,如<body><iframe src="xxx"  name="xxx" style=&q ...

  2. 基于NPOI的扩展

    using System; using System.Collections.Generic; using System.Linq; using System.Text; using NPOI.HSS ...

  3. Java 精度控制

    四舍五入,保留两位小数 (找了很多种方法,都有问题,测试得出下面这种方式是可用的) String str="0.235"; String.format("%.2f&quo ...

  4. ES6 arrow function

    语法: () => { … } // 零个参数用 () 表示: x => { … } // 一个参数可以省略 (): (x, y) => { … } // 多参数不能省略 (): 当 ...

  5. Leetcode0005--Longest Palindromic Substring 最长回文串

    [转载请注明]http://www.cnblogs.com/igoslly/p/8726771.html 来看一下题目: Given a string s, find the longest pali ...

  6. Excel常用的小技巧

    1.Excel如何实现单元格内轻松换行:按住ALT+enter就可以了. 2.Excel固定表头:在“视图”>冻结窗口>冻结首行. 3.防止电脑突然断电,导致正在编辑的Excel数据丢失, ...

  7. hadoop单机环境配置

    1.配置一台linux服务器(当前使用CentOS7)及一些基本设置 1.1在wmware下制作一台centos服务器(桥接模式)         并设置静态ip (编辑/etc/sysmconfig ...

  8. 实现Android-JNI本地C++调试

    1.       原文链接:NDK单步调试方法 如有问题或者版权要求,请拜访原作者或者通知本人. 最近为了性能需求,开始搞JNI,白手起搞真心不容易.中间差点崩溃了好几次,最终总算得到一点心得. JN ...

  9. 输出字符串格式化/ Linq对数组操作 /一个按钮样式

    textBox1.Text = dateTimePicker1.Value.ToString("yyyy-MM-dd HH:mm:ss"); , , , , , , , , , , ...

  10. vue中需要注意的问题总结(上)

    React 与其说是一种框架,倒不如说是一种开发范式.它的核心理念非常简单: 界面/视图就是数据结构的可视化表达UI = f(data) 而界面/视图由组件组合而来UI = f1(data) + f2 ...