hdu 5411 CRB and Puzzle 矩阵高速幂
题解链接:http://www.cygmasot.com/index.php/2015/08/20/hdu_5411/
给定n个点 常数m
以下n行第i行第一个数字表示i点的出边数。后面给出这些出边。
问:图里存在多少条路径使得路径长度<=m。路径上的点能够反复。
思路:
首先能得到一个m*n*n的dp。dp[i][j]表示路径长度为i 路径的结尾为j的路径个数 。
答案就是sigma(dp[i][j]) for every i from 1 to m, j from 1 to n;
我们先计算 路径长度恰好为 i 的方法数。
用矩阵高速幂,会发现是
当中B矩阵是一个n*n的矩阵。也就是输入的邻接矩阵。
A是一个n行1列的矩阵 A[i][1]表示长度为1且以i结尾的路径个数,所以A矩阵是全1矩阵。
相乘得到的n*1 的矩阵求和就是路径长度恰好为i的条数。
那么<=m的路径就是:
把A提出来,里面就是一个关于B的矩阵等比数列。
B的求发主要是二分。详见POJ3233
模板不大好,交G++能过
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<iostream>
#include<cstring>
#include<string>
#include<algorithm>
#include<cstdio>
#include<ctime> using namespace std;
template <class T>
inline bool rd(T &ret) {
char c; int sgn;
if (c = getchar(), c == EOF) return 0;
while (c != '-' && (c<'0' || c>'9')) c = getchar();
sgn = (c == '-') ? -1 : 1;
ret = (c == '-') ? 0 : (c - '0');
while (c = getchar(), c >= '0'&&c <= '9') ret = ret * 10 + (c - '0');
ret *= sgn;
return 1;
}
template <class T>
inline void pt(T x) {
if (x <0) {
putchar('-');
x = -x;
}
if (x>9) pt(x / 10);
putchar(x % 10 + '0');
}
const int mod = 2015;
const int N = 51; struct Matrix
{
int m[N][N];
}G[2000];
int top;
Matrix I;
int n, k;
const int M = 2015;
Matrix add(Matrix a, Matrix b)
{
Matrix &c = G[top++];
for (int i = 0; i<n; i++)
{
for (int j = 0; j<n; j++)
{
c.m[i][j] = a.m[i][j] + b.m[i][j];
c.m[i][j] %= M;
}
}
top--;
return c;
} Matrix multi(Matrix a, Matrix b)
{
Matrix &c = G[top++];
for (int i = 0; i<n; i++)
{
for (int j = 0; j<n; j++)
{
c.m[i][j] = 0;
for (int k = 0; k<n; k++)
c.m[i][j] += a.m[i][k] * b.m[k][j];
c.m[i][j] %= M;
}
}
top--;
return c;
} Matrix power(Matrix A, int n)
{
Matrix &ans = G[top++], &p = G[top++];
ans = I; p = A;
while (n)
{
if (n & 1)
{
ans = multi(ans, p);
n--;
}
n >>= 1;
p = multi(p, p);
}
top -= 2;
return ans;
} Matrix sum(Matrix A, int k)
{
if (k == 1) return A;
Matrix &t = G[top++];
t = sum(A, k / 2);
if (k & 1)
{
Matrix &cur = G[top++];
cur = power(A, k / 2 + 1);
t = add(t, multi(t, cur));
t = add(t, cur);
top--;
}
else
{
Matrix &cur = G[top++];
cur = power(A, k / 2);
t = add(t, multi(t, cur));
top--;
}
top--;
return t;
} int m;
void add(int &x, int y){
x += y;
if (x >= mod)x -= mod;
}
int B[N][N];
int main(){
memset(I.m, 0, sizeof I.m);
for (int i = 0; i < N; i++)I.m[i][i] = 1;
int T; rd(T);
while (T--){
rd(n); rd(m);
Matrix A;
top = 0;
memset(A.m, 0, sizeof A.m);
for (int i = 1; i <= n; i++) {
int tmp; rd(tmp); while (tmp--) { int u; rd(u); A.m[i-1][u-1] = 1; }
}
if (m == 0) { puts("1"); continue; }
if (m == 1){ pt(n + 1); puts(""); continue; }
Matrix ans = sum(A, m-1);
for (int i = 0; i<n; i++)
for (int j = 0; j<n; j++)
B[i][j] = ans.m[i][j]; for (int i = 0; i < n; i++)B[i][i] ++;
int hehe = 0;
for (int i = 0; i < n; i++)
{
for (int j = 0; j < n; j++)
add(hehe, B[i][j]);
}
pt(1 + hehe); puts("");
}
return 0;
}
/*
99
1 10
1 1 3 100000
3 1 2 3
3 1 2 3
3 1 2 3 5 3
5 1 2 3 4 5
4 2 3 4 5
3 1 3 5
5 1 2 3 4 5
3 1 2 3 */
hdu 5411 CRB and Puzzle 矩阵高速幂的更多相关文章
- hdu 5411 CRB and Puzzle (矩阵高速幂优化dp)
题目:http://acm.hdu.edu.cn/showproblem.php?pid=5411 题意:按题目转化的意思是,给定N和M,再给出一些边(u,v)表示u和v是连通的,问走0,1,2... ...
- HDOJ 5411 CRB and Puzzle 矩阵高速幂
直接构造矩阵,最上面一行加一排1.高速幂计算矩阵的m次方,统计第一行的和 CRB and Puzzle Time Limit: 2000/1000 MS (Java/Others) Memory ...
- HDU 1588 Gauss Fibonacci(矩阵高速幂+二分等比序列求和)
HDU 1588 Gauss Fibonacci(矩阵高速幂+二分等比序列求和) ACM 题目地址:HDU 1588 Gauss Fibonacci 题意: g(i)=k*i+b;i为变量. 给出 ...
- HDU 5411 CRB and puzzle (Dp + 矩阵高速幂)
CRB and Puzzle Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) T ...
- HDU 5411 CRB and Puzzle (2015年多校比赛第10场)
1.题目描写叙述:pid=5411">点击打开链接 2.解题思路:本题实际是是已知一张无向图.问长度小于等于m的路径一共同拥有多少条. 能够通过建立转移矩阵利用矩阵高速幂解决.当中,转 ...
- HDU 2256 Problem of Precision(矩阵高速幂)
题目地址:HDU 2256 思路: (sqrt(2)+sqrt(3))^2*n=(5+2*sqrt(6))^n; 这时要注意到(5+2*sqrt(6))^n总能够表示成an+bn*sqrt(6); a ...
- hdu 4965 Fast Matrix Calculation(矩阵高速幂)
题目链接.hdu 4965 Fast Matrix Calculation 题目大意:给定两个矩阵A,B,分别为N*K和K*N. 矩阵C = A*B 矩阵M=CN∗N 将矩阵M中的全部元素取模6,得到 ...
- 2015 Multi-University Training Contest 10 hdu 5411 CRB and Puzzle
CRB and Puzzle Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)To ...
- HDU - 1588 Gauss Fibonacci (矩阵高速幂+二分求等比数列和)
Description Without expecting, Angel replied quickly.She says: "I'v heard that you'r a very cle ...
随机推荐
- JQuery+Bootstrap总结
================JQuery=========== JQuery 1. jQuery是什么? 一个js插件, 相比较原生的DOM操作更简单.开发效率更高 2. jQuery使用 1. ...
- java 实现yaml 数据转json与map
首先引入snakeyaml-1.16.jar的包. 直接上代码: package com.ming.yaml; import java.util.Map; import org.yaml.snakey ...
- jquery插件之倒计时-团购秒杀
1.1 帮助文档关键字 倒计时 秒杀 timer 1.2. 使用场景 这样的倒计时在购物网站中会经常使用到,比如秒杀,限时抢购,确认收货倒计时. 这个功能并不难实现,就是利用js的定时执行,搜了 ...
- href标签中target的几个属性值
没有指定<a>的target属性值时,默认是"_blank,可以参考以下代码的设置来控制<a href="#" target="_blank& ...
- Eclipse中配置SVN(步骤简述)
————Eclipse中配置SVN(步骤简述)———— 1.有客户端(tortoiseSVN),服务器端(visualSVN) 两种,根据需要安装,安装后需重启电脑 2.服务器端配置:创建版本库(放工 ...
- System.Web.Caching.Cache类 Asp.Net缓存 各种缓存依赖
Cache类,是一个用于缓存常用信息的类.HttpRuntime.Cache以及HttpContext.Current.Cache都是该类的实例. 一.属性 属性 说明 Count 获取存储在缓存中的 ...
- Windows-Server-2008、IIS7.0环境下配置伪静态化
在Windows-Server-2008.IIS7.0环境下配置伪静态化 首先,是IIS7.0的配置,由于Windows Server 2008操作系统默认的IIS版本为 ...
- CNN结构:SPP-Net为CNNs添加空间尺度卷积-神经元层
前几个CNN检测的框架要求网络的图像输入为固定长宽,而SPP-Net在CNN结构中添加了一个实现图像金字塔功能的卷积层SPP层,用于在网络中实现多尺度卷积,由此对应多尺度输入,以此应对图像的缩放变换和 ...
- 与swift协议相关的技术
一.协议定义与实现: 1.关联类型: 2.协议组合: 3.协议扩展: 4.协议实现. 二.协议使用:
- python中*的用法
在python中,很多情况下会用到*,下面举一些例子来说明*的用法 1.数字计算中,*代表乘法,**代表求幂 print('2乘以3值为:%s'%(2*3)) print('2的3次方值为:%s'%( ...