链接

题解链接:http://www.cygmasot.com/index.php/2015/08/20/hdu_5411/

给定n个点 常数m

以下n行第i行第一个数字表示i点的出边数。后面给出这些出边。

问:图里存在多少条路径使得路径长度<=m。路径上的点能够反复。

思路:

首先能得到一个m*n*n的dp。dp[i][j]表示路径长度为i 路径的结尾为j的路径个数 。

答案就是sigma(dp[i][j]) for every i from 1 to m, j from 1 to n;

我们先计算 路径长度恰好为 i 的方法数。

用矩阵高速幂,会发现是

当中B矩阵是一个n*n的矩阵。也就是输入的邻接矩阵。

A是一个n行1列的矩阵 A[i][1]表示长度为1且以i结尾的路径个数,所以A矩阵是全1矩阵。

相乘得到的n*1 的矩阵求和就是路径长度恰好为i的条数。

那么<=m的路径就是:

把A提出来,里面就是一个关于B的矩阵等比数列。

B的求发主要是二分。详见POJ3233

模板不大好,交G++能过

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<iostream>
#include<cstring>
#include<string>
#include<algorithm>
#include<cstdio>
#include<ctime> using namespace std;
template <class T>
inline bool rd(T &ret) {
char c; int sgn;
if (c = getchar(), c == EOF) return 0;
while (c != '-' && (c<'0' || c>'9')) c = getchar();
sgn = (c == '-') ? -1 : 1;
ret = (c == '-') ? 0 : (c - '0');
while (c = getchar(), c >= '0'&&c <= '9') ret = ret * 10 + (c - '0');
ret *= sgn;
return 1;
}
template <class T>
inline void pt(T x) {
if (x <0) {
putchar('-');
x = -x;
}
if (x>9) pt(x / 10);
putchar(x % 10 + '0');
}
const int mod = 2015;
const int N = 51; struct Matrix
{
int m[N][N];
}G[2000];
int top;
Matrix I;
int n, k;
const int M = 2015;
Matrix add(Matrix a, Matrix b)
{
Matrix &c = G[top++];
for (int i = 0; i<n; i++)
{
for (int j = 0; j<n; j++)
{
c.m[i][j] = a.m[i][j] + b.m[i][j];
c.m[i][j] %= M;
}
}
top--;
return c;
} Matrix multi(Matrix a, Matrix b)
{
Matrix &c = G[top++];
for (int i = 0; i<n; i++)
{
for (int j = 0; j<n; j++)
{
c.m[i][j] = 0;
for (int k = 0; k<n; k++)
c.m[i][j] += a.m[i][k] * b.m[k][j];
c.m[i][j] %= M;
}
}
top--;
return c;
} Matrix power(Matrix A, int n)
{
Matrix &ans = G[top++], &p = G[top++];
ans = I; p = A;
while (n)
{
if (n & 1)
{
ans = multi(ans, p);
n--;
}
n >>= 1;
p = multi(p, p);
}
top -= 2;
return ans;
} Matrix sum(Matrix A, int k)
{
if (k == 1) return A;
Matrix &t = G[top++];
t = sum(A, k / 2);
if (k & 1)
{
Matrix &cur = G[top++];
cur = power(A, k / 2 + 1);
t = add(t, multi(t, cur));
t = add(t, cur);
top--;
}
else
{
Matrix &cur = G[top++];
cur = power(A, k / 2);
t = add(t, multi(t, cur));
top--;
}
top--;
return t;
} int m;
void add(int &x, int y){
x += y;
if (x >= mod)x -= mod;
}
int B[N][N];
int main(){
memset(I.m, 0, sizeof I.m);
for (int i = 0; i < N; i++)I.m[i][i] = 1;
int T; rd(T);
while (T--){
rd(n); rd(m);
Matrix A;
top = 0;
memset(A.m, 0, sizeof A.m);
for (int i = 1; i <= n; i++) {
int tmp; rd(tmp); while (tmp--) { int u; rd(u); A.m[i-1][u-1] = 1; }
}
if (m == 0) { puts("1"); continue; }
if (m == 1){ pt(n + 1); puts(""); continue; }
Matrix ans = sum(A, m-1);
for (int i = 0; i<n; i++)
for (int j = 0; j<n; j++)
B[i][j] = ans.m[i][j]; for (int i = 0; i < n; i++)B[i][i] ++;
int hehe = 0;
for (int i = 0; i < n; i++)
{
for (int j = 0; j < n; j++)
add(hehe, B[i][j]);
}
pt(1 + hehe); puts("");
}
return 0;
}
/*
99
1 10
1 1 3 100000
3 1 2 3
3 1 2 3
3 1 2 3 5 3
5 1 2 3 4 5
4 2 3 4 5
3 1 3 5
5 1 2 3 4 5
3 1 2 3 */

hdu 5411 CRB and Puzzle 矩阵高速幂的更多相关文章

  1. hdu 5411 CRB and Puzzle (矩阵高速幂优化dp)

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=5411 题意:按题目转化的意思是,给定N和M,再给出一些边(u,v)表示u和v是连通的,问走0,1,2... ...

  2. HDOJ 5411 CRB and Puzzle 矩阵高速幂

    直接构造矩阵,最上面一行加一排1.高速幂计算矩阵的m次方,统计第一行的和 CRB and Puzzle Time Limit: 2000/1000 MS (Java/Others)    Memory ...

  3. HDU 1588 Gauss Fibonacci(矩阵高速幂+二分等比序列求和)

    HDU 1588 Gauss Fibonacci(矩阵高速幂+二分等比序列求和) ACM 题目地址:HDU 1588 Gauss Fibonacci 题意:  g(i)=k*i+b;i为变量.  给出 ...

  4. HDU 5411 CRB and puzzle (Dp + 矩阵高速幂)

    CRB and Puzzle Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) T ...

  5. HDU 5411 CRB and Puzzle (2015年多校比赛第10场)

    1.题目描写叙述:pid=5411">点击打开链接 2.解题思路:本题实际是是已知一张无向图.问长度小于等于m的路径一共同拥有多少条. 能够通过建立转移矩阵利用矩阵高速幂解决.当中,转 ...

  6. HDU 2256 Problem of Precision(矩阵高速幂)

    题目地址:HDU 2256 思路: (sqrt(2)+sqrt(3))^2*n=(5+2*sqrt(6))^n; 这时要注意到(5+2*sqrt(6))^n总能够表示成an+bn*sqrt(6); a ...

  7. hdu 4965 Fast Matrix Calculation(矩阵高速幂)

    题目链接.hdu 4965 Fast Matrix Calculation 题目大意:给定两个矩阵A,B,分别为N*K和K*N. 矩阵C = A*B 矩阵M=CN∗N 将矩阵M中的全部元素取模6,得到 ...

  8. 2015 Multi-University Training Contest 10 hdu 5411 CRB and Puzzle

    CRB and Puzzle Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)To ...

  9. HDU - 1588 Gauss Fibonacci (矩阵高速幂+二分求等比数列和)

    Description Without expecting, Angel replied quickly.She says: "I'v heard that you'r a very cle ...

随机推荐

  1. 长脖子鹿省选模拟赛 [LnOI2019SP]快速多项式变换(FPT)

    本片题解设计两种解法 果然是签到题... 因为返回值问题T了好久... 第一眼:搜索大水题? 然后...竟然A了 #include<cstdio> #include<queue> ...

  2. MySQL实现递归查询

    DROP FUNCTION IF EXISTS queryChildrenCaseInfo;CREATE FUNCTION queryChildrenCaseInfo(cId INT)RETURNS ...

  3. Vue 区别

    computed和methods区别 效果是一样的,但是 computed 是基于它的依赖缓存,只有相关依赖发生改变时才会重新取值. 而methods,在重新渲染的时候,函数总会重新调用执行.

  4. rabbit--消息持久化

    消息的可靠性是RabbitMQ的一大特色,那么RabbitMQ是如何保证消息可靠性的呢——消息持久化. 为了保证RabbitMQ在退出或者crash等异常情况下数据没有丢失,需要将queue,exch ...

  5. CentOS 安装dotNetCore

    如果要在CentOS上运行.net Core程序,必须安装.net Core Sdk 具体安装 方法,可以参考微软官方站点说明,非常详细: 1)百度搜索 .Net Core 2)先择CentOS版本: ...

  6. IVVI SK3-02小骨酷派SK3-02 进入第三方 recovery 刷机 ROOT

    首先下载好工具:http://url.cn/5AS7IiB 备用连接 :https://pan.baidu.com/s/1jJmbYAi 本篇教程教你如何傻瓜式解锁BootLoader并进入临时rec ...

  7. Architecture:话说科学家/工程师/设计师/商人

    从使命.目的.行为的不同,可以归类人群到科学家.工程师.设计师.商人等等.使命分别是:1.携带当下社会的财富对未来探索,希望引发变革:2.掌握工程全貌.完成整个工程的圣经周期:3.在工程的设计层面做文 ...

  8. THREE.js代码备份——webgl - custom attributes [lines](自定义字体显示、控制字图的各个属性)

    <!DOCTYPE html> <html lang="en"> <head> <title>three.js webgl - cu ...

  9. day008 字符编码之 字符编码 、Python2和Python3字符编码的区别

    计算机基础(掌握) 启动应用程序的流程 双击qq 操作系统接受指令然后把该操作转化为0和1发送给CPU CPU接受指令然后把指令发送给内存 内存接受指令把指令发送给硬盘获取数据 qq在内存中运行 文本 ...

  10. typora与Markdown的一些小问题

    一.typora中修改图像大小 加上style="zoom:50%" <img src="E:\GitHub_learn\blog\source\imgs\tree ...