认清函数的真面目



函数的意义





面向过程的程序设计



函数声明和定义





函数参数







编写代码的时候,不要编写类似先后调用的代码 f(k,k++)



C语言中的顺序点





a--&&a  ,&&为顺序点,所以a--&&a为0

f(k,k++)的顺序点为进入函数体之前



函数的缺省认定



小结



可变参数列表

如何编写一个可以计算n个数平均值的函数?

用数组



用可变参数列表

可变参数





可变参数的限制



小结





李逵和李鬼(函数和宏)





宏的优点和缺点





函数的优缺点



宏无可替代的优点



小结



函数调用行为

活动记录





函数参数入栈



调用约定



小结



递归概述





利用递归函数求解n!



小结



字符数组的全排列(递归算法的实现)

全排列的生成算法

全排列的生成算法就是对于给定的字符集,用有效的方法将所有可能的全排列无重复无遗漏地枚举出来。任何n个字符集的排列都可以与1~n的n个数字的排列一一对应,因此在此就以n个数字的排列为例说明排列的生成法。

n个字符的全体排列之间存在一个确定的线性顺序关系。所有的排列中除最后一个排列外,都有一个后继;除第一个排列外,都有一个前驱。每个排列的后继都可以从 它 的前驱经过最少的变化而得到,全排列的生成算法就是从第一个排列开始逐个生成所有的排列的方法。

全排列的生成法通常有以下几种:

字典序法

递增进位数制法

递减进位数制法

邻位交换法

n进位制法

递归类算法

1.字典序法

字典序法中,对于数字1、2、3......n的排列,不同排列的先后关系是从左到右逐个比较对应的数字的先后来决定的。例如对于5个数字的排列 12354和12345,排列12345在前,排列12354在后。按照这样的规定,5个数字的所有的排列中最前面的是12345,最后面的是 54321。

字典序算法如下:

设P是1~n的一个全排列:p=p1p2......pn=p1p2......pj-1pjpj+1......pk-1pkpk+1......pn

1)从排列的右端开始,找出第一个比右边数字小的数字的序号j(j从左端开始计算),即   j=max{i|pi<pi+1}

2)在pj的右边的数字中,找出所有比pj大的数中最小的数字pk,即 k=max{i|pi>pj}(右边的数从右至左是递增的,因此k是所有大于pj的数字中序号最大者)

3)对换pi,pk 

4)再将pj+1......pk-1pkpk+1pn倒转得到排列p'=p1p2.....pj-1pjpn.....pk+1pkpk-1.....pj+1,这就是排列p的下一个下一个排列。

例如839647521是数字1~9的一个排列。从它生成下一个排列的步骤如下: 

自右至左找出排列中第一个比右边数字小的数字4          839647521

在该数字后的数字中找出比4大的数中最小的一个5        839647521

将5与4交换                                                                         839657421

将7421倒转                                                                          839651247

所以839647521的下一个排列是839651247。

程序代码如下:

Private Sub Dict(p() As Integer, ByVal n As Integer)

Dim i As Integer, j As Integer

OutL p

i = n - 1

Do While i > 0

   If p(i) < p(i + 1) Then

For j = n To i + 1 Step -1                          '从排列右端开始

If p(i) <= p(j) Then Exit For                '找出递减子序列

Next

Swap p(i), p(j)                   '将递减子序列前的数字与序列中比它大的第一个数交换

For j = n To 1 Step -1                            '将这部分排列倒转

i = i + 1

If i >= j Then Exit For

Swap p(i), p(j)

Next

OutL p                                                     '输出一个排列

i = n

   End If

   i = i - 1

Loop

End Sub

Swap p(i), p(j)是交换两个元素的子过程,OutL p是输出排列的子过程。

2.递增进位数制法

在递增进位制数法中,从一个排列求另一个排列需要用到中介数。如果用 ki表示排列p1p2...pi...pn中元素pi的右边比pi小的数的个数,则排列的中介数就是对应的排列k1 ...... ki...... kn-1。

例如排列839647521的中介数是72642321,7、2、6、......分别是排列中数字8、3、9、......的右边比它小的数字个数。

中介数是计算排列的中间环节。已知一个排列,要求下一个排列,首先确定其中介数,一个排列的后继,其中介数是原排列中介数加1,需要注意的是,如果中介数 的末位kn-1+1=2,则要向前进位,一般情形,如果ki+1=n-i+1,则要进位,这就是所谓的递增进位制。例如排列839647521的中介数是 72642321,则下一个排列的中介数是67342221+1=67342300(因为1+1=2,所以向前进位,2+1=3,又发生进位,所以下一个 中介数是67342300)。

得到中介数后,可根据它还原对应得排列。算法如下:

中介数k1、k2、......、kn-1的各位数字顺序表示排列中的数字n、n-1、......、2在排列中距右端的的空位数,因此,要按k1、 k2、......、kn-1的值从右向左确定n、n-1、......、2的位置,并逐个放置在排列中:i放在右起的ki+1位,如果某位已放有数字, 则该位置不算在内,最后一个空位放1。

因此从67342300可得到排列849617523,它就是839647521的后一个排列。因为9最先放置,k1=6,9放在右起第7位,空出6个空位,然后是放8,k2=7,8放在右起第8位,但9占用一位,故8应放在右起第9位,余类推。

程序代码如下:



Private Sub Incr(p() As Integer, ByVal n As Integer)

Dim m() As Integer                               '保存中介数的数组

Dim i As Integer, j As Integer

Dim a As Integer

ReDim m(n)

For i = 1 To n                                        '第一个排列的中介数为000......0

   m(i) = 0

Next

Do While n > 0

   For i = 1 To n                                        '排列的各位为0

p(i) = 0

   Next

   For i = 1 To n                                        '从右向左察看排列中为0的位

a = m(i) + 1

j = n

Do While j > 0

If p(j) = 0 Then

    a = a - 1

    If a = 0 Then Exit Do                      '0的个数决定数字i的位置

End If

j = j - 1

Loop

p(j) = n - i + 1                                     '将数字i放置在指定位置

   Next                   

   OutL p

   If MedN(m) Then Exit Do       '计算下一个中介数,如果是00...0,则全部排列找到

Loop

End Sub

Private Function MedN(m() As Integer)As Boolean        '计算中介数函数

Dim i As Integer, sum As Integer

Dim b As Boolean

b = False

i = n - 1

Do While i > 0                                                          

   m(i) = m(i) + 1

   If m(i) < n - i + 1 Then Exit Do

   m(i) = 0

   i = i - 1

Loop

Sum = 0

For i = 1 To n - 1                               '计算中介数各位之和

   Sum = Sum + m(i)

Next 

If Sum = 0 Then b = True                    '中介数各位之和为0

MedN = b

End Function

3.递减进位制数法

在递增进位制数法中,中介数的最低位是逢2进1,进位频繁,这是一个缺点。把递增进位制数翻转,就得到递减进位制数。 

839647521的中介数是67342221(k1k2…kn-1),倒转成为12224376(kn-1…k2k1),这是递减进位制数的中介数: ki(i=n-1,n-2,…,2)位逢i向ki-1位进1。给定排列p,p的下一个排列的中介数定义为p的中介数加1。例如p=839647521,p 的中介数为12224376,p的下一个排列的中介数为12224376+1=12224377,由此得到p的下一个排列为893647521。

给定中介数,可用与递增进位制数法类似的方法还原出排列。但在递减进位制数中,可以不先计算中介数就直接从一个排列求出下一个排列。具体算法如下:

1)如果p(i)=n且i<>n,则p(i)与p(i-1)交换

2)如果p(n)=n,则找出一个连续递减序列9、8、......、i,将其从排列左端删除,再以相反顺序加在排列右端,然后将i-1与左边的数字交换

例如p=893647521的下一个排列是983647521。求983647521的下一个排列时,因为9在最左边且第2位为8,第3位不是7,所以将 8和9从小到大排于最右端364752189,再将7与其左方数字对调得到983647521的下一个排列是367452189。又例如求 987635421的下一个排列,只需要将9876从小到大排到最右端并将5与其左方数字3对调,得到534216789。

程序代码如下:

Private Sub Degr(p() As Integer, ByVal n As Integer)

Dim i As Integer, j As Integer

Do While n > 0

   OutL p

   If p(1) = n Then                               '如果第一位是n

i = 0

Do                                                     '从左端开始找出最长的连续递降序列

i = i + 1

If i = n Then Exit Sub

Loop Until p(i) <> p(i + 1) + 1

j = i

Do                                                 '找出递降序列末尾数字的下一个数字

i = i + 1

Loop Until p(i) = p(j) - 1

Swap p(i), p(i - 1)                         '将它与序列末尾数字交换

For i = 1 To n - j                             '将递减序列倒转后放置在排列右端

p(i) = p(i + j)

Next

For i = 1 To j

p(n - i + 1) = n - i + 1

Next

   Else                                                  '如果最高位不是n

i = 0                                              '从左端开始 

Do                                                 '找出n所在位置

i = i + 1

Loop Until p(i) = n

Swap p(i), p(i - 1)                          '将n与其左边数字交换

   End If 

Loop

End Sub



4.邻位对换法

邻位对换法中下一个排列总是上一个排列某相邻两位对换得到的。以4个元素的排列为例,将最后的元素4逐次与前面的元素交换,可以生成4个新排列:

1 2 3 4   1 2 4 3   1 4 2 3   4 1 2 3

然后将最后一个排列的末尾的两个元素交换,再逐次将排头的4与其后的元素交换,又生成四个新排列:

   4 1 3 2   1 4 3 2   1 3 4 2   1 3 2 4

再将最后一个排列的末尾的两个元素交换,将4从后往前移:

3 1 2 4   3 1 4 2   3 4 1 2 4 3 1 2

如此循环既可求出全部排列。

程序代码如下:

Private Sub Adja(p() As Integer, ByVal n As Integer)

m = 1

For i = 3 To n - 1                                '计算(n-1)!/2

   m = m * i

Next

For i = 1 To m - 1                            

   OutL p

   For j = n To 2 Step -1                      '将n从排列尾逐位向前移

Swap p(j), p(j - 1)

OutL p                                           '移动一次产生一个新排列

   Next

   Swap p(n), p(n - 1)                         

   OutL p

   For j = 1 To n - 1                            '将n从排列头逐位向后移

Swap p(j), p(j + 1)

OutL p                                           '移动一次产生一个新排列

   Next

   Swap p(1), p(2)

Next

End Sub  

5.元素增值法(n进制法)

1)从原始排列p=p1p2......pn开始,第n位加n-1,如果该位的值超过n,则将它除以n,用余数取代该位,并进位(将第n-1位加1)

2)再按同样方法处理n-1位,n-2位,......,直至不再发生进位为止,处理完一个排列就产生了一个新的排列

3)将其中有相同元素的排列去掉

4)当第一个元素的值>n则结束

以3个数1、2、3的排列为例:原始排列是1   2   3,从它开始,第3个元素是3,3+2=5,5 Mod 3=2,第2个元素是2,2+1=3,所以新排列是1 3 2。通过元素增值,顺序产生的排列是:1   2   3,1   3   2,2   1   1,2   1   3,2   2   2,2   3   1,2   3   3,3   1   2,3   2   1

有下划线的排列中存在重复元素,丢弃,余下的就是全部排列。

Private Sub Incr(p() As Integer, ByVal n As Integer)

   Dim i As Integer, j As Integer                                              

   Do While n > 0

OutL p

Nextn:   p(n) = p(n) + n - 1                '第n个元素增值n-1

   For j = n To 2 Step -1                       '从后往前检查

If p(j) > n Then                                '如果元素增值后超过n

p(j) = p(j) Mod n                             '用n除它取余数

p(j - 1) = p(j - 1) + 1                       '向前一个元素进位

If p(1) > n Then Exit Sub             '第一个元素值超过n,则所有排列都找到

End If

   Next

   For i = 1 To n - 1                             '检查排列中的元素是否重复

For j = i + 1 To n

If p(i) = p(j) Then GoTo Nextn '排列中有重复元素,丢弃

Next

   Next

Loop

End Sub

6.递归类算法

全排列的生成方法用递归方式描述比较简洁,实现的方法也有多种。

1)回溯法

回溯法通常是构造一颗生成树。以3个元素为例;树的节点有个数据,可取值是1、2、3。如果某个为0,则表示尚未取值。

初始状态是(0,0,0),第1个元素值可以分别挑选1,2,3,因此扩展出3个子结点。用相同方法找出这些结点的第2个元素的可能值,如此反复进行,一旦出现新结点的3个数据全非零,那就找到了一种全排列方案。当尝试了所有可能方案,即获得了问题的解答。

程序代码如下:

Private Sub Remo(p() As Integer, ByVal k As Integer)

   Dim b As Boolean 

   If k = n + 1 Then                            '如果k>n则输出一个排列  

OutL p

   Else                                                 '否则

For i = 1 To n             

    b = False                                        '重复元素标志置为False

p(k) = i                                           '第k个元素设为i

For j = 1 To k - 1                            '检查是否存在重复元素

   If i = p(j) Then                                '有重复

   b = True                                        '设置重复标志为True

   j = k - 1                                        '回溯

End If

Next                                                 '换一个元素试探

If Not b Then Remo, k + 1             '无重复,继续递归找下一个元素

   Next

End If

End Sub

2)递归算法

如果用P表示n个元素的排列,而Pi表示不包含元素i的排列,(i)Pi表示在排列Pi前加上前缀i的排列,那么,n个元素的排列可递归定义为:

如果n=1,则排列P只有一个元素i

如果n>1,则排列P由排列(i)Pi构成(i=1、2、....、n-1)。

根据定义,容易看出如果已经生成了k-1个元素的排列,那么,k个元素的排列可以在每个k-1个元素的排列Pi前添加元素i而生成。例如2个元素的排列是 1   2和2 1,对与个元素而言,p1是2   3和3   2,在每个排列前加上1即生成1 2 3和1 3 2两个新排列,p2和p3则是1   3、3   1和1   2、2   1,按同样方法可生成新排列2 1 3、2 3 1和3 1 2、3 2 1。

程序代码如下:

Private Sub Recu(p() As Integer, ByVal k As Integer)

   If k = n Then

OutL p

   Else

For i = k To n

   Swap p(k), p(i)

   Recu p, k + 1

   Swap p(k), p(i) 

Next

   End If

End Sub



3)循环移位法

如果已经生成了k-1个元素的排列,则在每个排列后添加元素k使之成为k个元素的排列,然后将每个排列循环左移(右移),每移动一次就产生一个新的排列。

例如2个元素的排列是1 2和2 1。在1 2 后加上3成为新排列1 2 3,将它循环左移可再生成新排列2 3 1、3 1 2,同样2 1 可生成新排列2 1 3、1 3 2和3 2 1。

程序代码如下:

Private Sub Cycl(p() As Integer,ByVal k As Integer)

If k > n Then

   OutL p 

   tot = tot + 1

Else

   For i = 0 To k - 1

t = p(1)

For j = 2 To k

p(j - 1) = p(j)

Next

p(k) = t

Cycl   p,k + 1

   Next

End If

End Sub



函数设计技巧







省略了相当于返回int



尽量少用static类的关键字



c=getchar()返回值为int类型

if永远无法进入













































































































C语言深度剖析-----函数的更多相关文章

  1. C语言深度剖析-----函数与指针分析

    阅读代码的重要技巧 函数类型 函数指针 回调函数 使用示例 指针阅读技巧解析 例

  2. C语言深度剖析-----函数与指针的分析

                          指针的本质 指针需要保证指向任意数据类型,所以指针变量都占用32位bit即4字节. PS:不同机器上,指针占用内存不一                   ...

  3. 读书笔记之:C语言深度剖析

    读书笔记之:C语言深度剖析 <C 语言深度解剖>这本书是一本“解开程序员面试笔试的秘密”的好书.作者陈正冲老师提出“以含金量勇敢挑战国内外同类书籍”,确实,这本书中的知识点都是一些在面试中 ...

  4. 指针与数组的区别 —— 《C语言深度剖析》读书心得

    原书很多已经写的很清楚很精炼了,我也无谓做无意义的搬运,仅把一些基础和一些我自己以前容易搞混的地方写一下. 1. 意义: 指针: 指针也是一种类型,长度为4字节,其存放的内容只能是一个地址(4字节). ...

  5. 《C语言深度剖析》学习笔记----C语言中的符号

    本节主要讲C语言中的各种符号,包括注释符.单引号双信号以及逻辑运算符等. 一.注释符 注释符号和注释在程序的预编译期就已经被解决了,在预编译期间,编译器会将注释符号和注释符号之间的部分简单的替换成为空 ...

  6. C语言深度剖析-笔记

    关键字: C语言关键字32个: 关键字                                         意 义 auto                           声明自动变 ...

  7. C语言深度剖析-----内存管理的艺术

    动态内存分配 为什么使用动态内存分配 例:记录卖出的商品 卖出商品最多只能记录1000个 两种改进的方法 都需要动态内存分配 第二种方法需要重置内存 calloc和realloc realloc重置内 ...

  8. C语言深度剖析学习错误点记录

    0. static修饰变量和函数 static修饰变量,1)限定作用域,本文件内.全局变量(自定义起,本文件前面要用需extern声明),局部变量函数内:2)生命周期,程序运行期间一直保存. stat ...

  9. C语言深度剖析---预处理(define)(转载)

    1.数值宏常量     #define宏定义是个演技非常高超的替身演员,但也会耍大牌的,所以我们使用它要慎之又慎.它可以出现在代码的任何地方,从本行宏定义开始,以后的代码都认识宏了:也可以把任何东西都 ...

随机推荐

  1. RvmTranslator6.4 is released

    RvmTranslator6.4 is released eryar@163.com RvmTranslator can translate the RVM file exported by AVEV ...

  2. jquery19 ajax()

    <!DOCTYPE HTML> <html> <head> <meta http-equiv="Content-Type" content ...

  3. dfs算法中求数列的组合

    /* 从13个书中挑选5个值,他们的组合可能是 什么, 如下代码 dfs深度遍历, 和全排列是一种方法,但是思路不同 */ public class Main { static int count = ...

  4. golang语言入门及安装

    golang语言入门及安装 go语言是google在2009年发布的开源编程语言使用Go编译的程序可以媲美C或C++代码的速度,而且更加安全.支持并行进程. 本次讲解在windows上安装go语言的开 ...

  5. web前端响应式布局,自适应全部分辨率

    写phpd的我. 近期公司要弄个app关键是没有web开发,而我有比較闲,那就扛枪上阵吧. 响应式布局,web端的?php我一直都是用tp框架,对于web首先想到的是bootstrap框架.仅仅是简单 ...

  6. poj3244(公式题)

    Difference between Triplets Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 2476   Acce ...

  7. jquary依据td中button的元素属性删除tr行(删选出想删除的行)

    watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvcnVveXVhbnlp/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA ...

  8. SDUTOJ 2711 4-2 电子时钟中的运算符重载

    watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvUl9NaXNheWE=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA ...

  9. Qt样式表——选择器详解(父子关系)

    在上一节中,小豆君给大家介绍了样式表的基本概念和大致用法.今天我们来详细了解下样式表中选择器的用法. 所谓选择器,就是指定你所设置的样式对哪个或哪些控件起作用. 到目前为止,Qt样式表支持CSS2中定 ...

  10. count 变量的使用

    count:统计出现的次数,当某种情况发生时,执行 +1 的动作,+1 的动作常置于循环体内.基本结构如下: count = 0 while count < vnum and **: ... c ...