代码如下,测试发现,是否对输入数据进行归一化/标准化对于结果没有影响:

import numpy as np
from sklearn.ensemble import IsolationForest
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import MinMaxScaler def parse_line(s):
s = s.replace("u'", "").replace("'", "").replace("(", "").replace(")", "").replace("[", "").replace("]", "")
s2 = s.split(",")
dat = [float(_) for _ in s2[1:]]
return (s2[0], dat) def get_data():
with open("feature.dat") as f:
lines = f.readlines()
return [parse_line(line) for line in lines] def train(collected_data):
input_data = [c[1] for c in collected_data]
#scaler = StandardScaler().fit(input_data)
#input_data = scaler.transform(input_data) #min_max_scaler = MinMaxScaler()
#input_data = min_max_scaler.fit_transform(input_data)
#print input_data rng = np.random.RandomState(42)
#clf = IsolationForest(max_samples=10*2, random_state=rng)
#clf = IsolationForest(max_features=5)
clf = IsolationForest(max_samples="auto", random_state=rng)
clf.fit(input_data)
pred_y = clf.predict(input_data) bad_domains = set()
for i,y in enumerate(pred_y):
if y == -1:
print "bad domains:", collected_data[i]
bad_domains.add(collected_data[i][0]) if __name__ == "__main__":
dat = get_data()
train(dat)

输出样例:

bad domains: ('openvpn.', [81.0, 5.0, 3.0, 14.0, 0.1728395061728395, 27.493827160493826, 32.76543209876543, 3.2857142857142856, 18.214285714285715, 3.0714285714285716, 3.255427209766844, 0.04938271604938271, 0.0, 0.3950617283950617, 0.12345679012345678, 0.00224517287831163])
bad domains: ('mobily.com.sa', [16.0, 1.0, 4.0, 12.0, 0.75, 47.3125, 108.8125, 1.0, 5.333333333333333, 0.0, 1.9166666666666667, 0.6875, 0.0, 0.375, 0.375, 0.0066050198150594455])
bad domains: ('vcl2728.com', [40.0, 2.0, 10.0, 27.0, 0.675, 67.125, 462.85, 3.3333333333333335, 28.555555555555557, 3.3703703703703702, 3.111111111111111, 0.025, 0.0, 0.0, 0.0, 0.00186219739292365])
bad domains: ('vkcache.com', [598.0, 1.0, 2.0, 528.0, 0.882943143812709, 47.0, 161.65886287625418, 1.0, 6.0, 0.005681818181818182, 2.453875312427234, 0.22909698996655517, 0.0, 0.11371237458193979, 0.0033444816053511705, 0.00017789795773144525])
bad domains: ('nsconcreteblock.info', [18.0, 2.0, 4.0, 18.0, 1.0, 87.0, 43.5, 1.0, 37.0, 5.0, 3.823329582775343, 1.0, 0.0, 0.0, 0.0, 0.0031928480204342275])
bad domains: ('topcdn.org', [52.0, 2.0, 4.0, 13.0, 0.25, 80.92307692307692, 56.38461538461539, 1.0, 40.92307692307692, 0.0, 4.176988788169356, 0.5, 0.0, 0.28846153846153844, 0.21153846153846154, 0.001188212927756654])
bad domains: ('bilibiligame.net', [6472.0, 165.0, 17.0, 32.0, 0.004944375772558714, 46.542954264524106, 88.28522867737948, 1.0, 18.65625, 2.84375, 3.4818361348887463, 0.9610630407911002, 0.0, 0.2376390605686032, 0.0004635352286773795, 1.659883277007961e-05])
bad domains: ('vip.', [2183.0, 386.0, 30.0, 32.0, 0.014658726523133303, 34.78515803939533, 23.834631241410904, 1.9375, 9.6875, 0.0, 2.83937270784057, 0.9436555199267064, 0.0, 0.09894640403114979, 0.011452130096197893, 6.58449220396123e-05])
bad domains: ('ixigua.com', [2707.0, 133.0, 29.0, 17.0, 0.006280014776505356, 33.71222755818249, 123.10749907646841, 1.0, 4.647058823529412, 0.8823529411764706, 1.9781718484300252, 0.9759881787957149, 0.0, 0.28075360177318065, 0.01699298115995567, 5.478911668986072e-05])
bad domains: ('expressvpn.', [890.0, 31.0, 36.0, 165.0, 0.1853932584269663, 41.89887640449438, 0.0, 1.0363636363636364, 11.224242424242425, 0.05454545454545454, 3.0592421535372565, 0.5325842696629214, 0.0, 0.0, 0.0, 0.00013408420488066506])

输入数据样例(已经提取了特征):

(u'abfxsc.com', (24, 1, 4, 11, 0.4583333333333333, 48.0, 56.041666666666664, 1.0, 8.0, 0.0, 3.0, 0.5, 0.0, 0.20833333333333334, 0.08333333333333333, 0.004340277777777778))
(u'dqdkws.cn', (71, 2, 7, 50, 0.704225352112676, 45.0, 79.859154929577471, 1.0, 6.0, 0.0, 2.4132632507067329, 0.5915492957746479, 0.0, 0.0, 0.0, 0.0015649452269170579))
(u'tcdnvod.com', (701, 51, 17, 40, 0.05706134094151213, 55.266761768901567, 56.370898716119832, 3.1749999999999998, 17.399999999999999, 0.125, 3.4810606143066232, 0.9714693295292439, 0.0, 0.39514978601997147, 0.0442225392296719, 0.00012905890248309329))
(u'0937jyg.com', (68, 4, 7, 19, 0.27941176470588236, 46.25, 67.529411764705884, 1.0, 5.3684210526315788, 0.0, 2.2469056830015672, 0.6323529411764706, 0.0, 0.0, 0.0, 0.001589825119236884))
(u'jcloud-cdn.com', (61, 3, 3, 11, 0.18032786885245902, 67.278688524590166, 66.311475409836063, 4.5454545454545459, 24.363636363636363, 0.18181818181818182, 3.5244668708659161, 0.4262295081967213, 0.0, 0.08196721311475409, 0.03278688524590164, 0.0012183235867446393))
(u'omacloud.com', (545, 8, 20, 29, 0.05321100917431193, 46.315596330275227, 30.722935779816513, 1.9655172413793103, 17.793103448275861, 0.0, 3.3836270422458083, 1.0, 0.0, 0.10825688073394496, 0.022018348623853212, 0.00019808256081134618))
(u'serverss.top', (144, 1, 15, 22, 0.1527777777777778, 46.604166666666664, 50.145833333333336, 1.0, 4.5909090909090908, 0.0, 2.1594720075625, 0.5277777777777778, 0.0, 0.2777777777777778, 0.06944444444444445, 0.00074504544777231408))
(u'ctripgslb.com', (601, 9, 10, 34, 0.056572379367720464, 60.512479201331118, 157.12479201331115, 3.0588235294117645, 17.911764705882351, 0.91176470588235292, 3.3912394967901913, 0.8585690515806988, 0.0, 0.3594009983361065, 0.016638935108153077, 0.00013748350197976243))
(u'kas-labs.com', (54, 2, 8, 15, 0.2777777777777778, 55.888888888888886, 142.37037037037038, 1.0, 12.466666666666667, 1.6000000000000001, 3.0989151803147923, 0.5, 0.0, 0.09259259259259259, 0.09259259259259259, 0.0016567263088137839))
(u'mccdnglb.com', (365, 4, 6, 21, 0.057534246575342465, 51.161643835616438, 98.161643835616445, 3.5238095238095237, 18.428571428571427, 0.19047619047619047, 3.4116298602195974, 0.989041095890411, 0.0, 0.16164383561643836, 0.01643835616438356, 0.00026775195458926852))
(u'localhost.', (28, 4, 3, 10, 0.35714285714285715, 41.142857142857146, 172.35714285714286, 1.8999999999999999, 10.9, 1.8999999999999999, 2.3999999999999999, 0.14285714285714285, 0.0, 0.0, 0.0, 0.004340277777777778))
(u'xdy-cdn.cn', (473, 5, 2, 50, 0.10570824524312897, 54.780126849894295, 46.545454545454547, 3.0, 14.74, 0.0, 3.1343677127142864, 0.5750528541226215, 0.0, 0.0, 0.0, 0.00019296823742811933))
(u'labkas.com', (24, 2, 6, 10, 0.4166666666666667, 56.666666666666664, 66.833333333333329, 2.0, 17.399999999999999, 1.7, 3.6751008468322333, 0.08333333333333333, 0.0, 0.0, 0.0, 0.0036764705882352941))
(u'site.', (62, 5, 22, 14, 0.22580645161290322, 43.322580645161288, 50.774193548387096, 1.9285714285714286, 11.785714285714286, 0.21428571428571427, 3.0365341332026929, 0.5806451612903226, 0.0, 0.11290322580645161, 0.06451612903225806, 0.0018615040953090098))
(u'ft25882.com', (39, 2, 5, 20, 0.5128205128205128, 49.0, 92.871794871794876, 1.0, 8.0, 0.0, 3.0, 0.5384615384615384, 0.0, 0.3076923076923077, 0.05128205128205128, 0.0026164311878597592))
(u'douyuyuba.com', (232, 4, 7, 115, 0.4956896551724138, 62.650862068965516, 97.504310344827587, 2.0, 21.530434782608694, 0.97391304347826091, 3.4599350912323117, 0.5560344827586207, 0.0, 0.25, 0.008620689655172414, 0.00034399724802201581))
(u'win.', (334, 7, 39, 23, 0.0688622754491018, 42.604790419161674, 60.008982035928142, 1.8695652173913044, 13.217391304347826, 0.21739130434782608, 2.9398183078690807, 0.7904191616766467, 0.0, 0.3772455089820359, 0.041916167664670656, 0.00035137034434293746))
(u'affise.com', (73, 3, 10, 10, 0.136986301369863, 49.246575342465754, 146.56164383561645, 1.0, 8.5, 0.0, 2.5368841208873407, 0.6027397260273972, 0.0, 0.273972602739726, 0.0547945205479452, 0.0013908205841446453))
(u'stripcdn.com', (46, 3, 8, 17, 0.3695652173913043, 44.043478260869563, 160.54347826086956, 1.0, 3.8823529411764706, 0.52941176470588236, 1.8718920798583554, 0.391304347826087, 0.0, 0.10869565217391304, 0.10869565217391304, 0.0024679170779861796))
(u'doonoo.cn', (198, 1, 8, 19, 0.09595959595959595, 42.111111111111114, 66.060606060606062, 1.0, 3.1052631578947367, 0.0, 1.6286506585399816, 0.5, 0.0, 0.2222222222222222, 0.025252525252525252, 0.00059966418805468941))
(u'nii.ac.jp', (34, 3, 8, 16, 0.47058823529411764, 43.029411764705884, 34.529411764705884, 1.3125, 7.3125, 0.1875, 2.4667777025215347, 0.4411764705882353, 0.0, 0.08823529411764706, 0.08823529411764706, 0.0034176349965823649))
(u'78dm.net', (41, 5, 6, 11, 0.2682926829268293, 39.146341463414636, 66.634146341463421, 1.0, 3.3636363636363638, 0.18181818181818182, 1.3510446035661767, 0.7317073170731707, 0.0, 0.3170731707317073, 0.04878048780487805, 0.0031152647975077881))
(u'gosuncdn.com', (587, 5, 36, 40, 0.06814310051107325, 53.325383304940374, 204.61328790459967, 3.25, 15.699999999999999, 0.0, 3.3370338393801235, 0.5724020442930153, 0.0, 0.09540034071550256, 0.010221465076660987, 0.00015973420228739378))
(u'gfnormal04aj.com', (68, 2, 2, 33, 0.4852941176470588, 62.0, 58.970588235294116, 1.0, 16.0, 0.0, 3.4444634232339926, 0.5147058823529411, 0.0, 0.25, 0.058823529411764705, 0.0011859582542694497))
(u'mediatoday.co.kr', (13, 1, 3, 12, 0.9230769230769231, 50.46153846153846, 100.61538461538461, 1.0, 4.583333333333333, 0.0, 1.7623953076615158, 1.0, 0.0, 0.23076923076923078, 0.23076923076923078, 0.007621951219512195))
(u'qinsx.cn', (127, 4, 8, 14, 0.11023622047244094, 29.811023622047244, 51.362204724409452, 1.0, 1.9285714285714286, 0.0, 0.9285714285714286, 0.5905511811023622, 0.0, 0.30708661417322836, 0.06299212598425197, 0.0013206550449022716))

参考:http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html#sklearn.ensemble.IsolationForest

使用isolation forest进行dns网络流量异常检测的更多相关文章

  1. 5-Spark高级数据分析-第五章 基于K均值聚类的网络流量异常检测

    据我们所知,有‘已知的已知’,有些事,我们知道我们知道:我们也知道,有 ‘已知的未知’,也就是说,有些事,我们现在知道我们不知道.但是,同样存在‘不知的不知’——有些事,我们不知道我们不知道. 上一章 ...

  2. 基于PySpark的网络服务异常检测系统 阶段总结(二)

    在上篇博文中介绍了网络服务异常检测的大概,本篇将详细介绍SVDD和Isolation Forest这两种算法 1. SVDD算法 SVDD的英文全称是Support Vector Data Descr ...

  3. alluxio网络流量异常分析【转】

    1. 介绍 2. 准备工作 2.1 tcpdump 2.2 winshark 2.3 安装iftop 2.4 alluxio网络通信相关的端口 3.iftop 锁定消耗流量最大的端口 4. dump数 ...

  4. activeMQ消费消息时网络流量异常大的问题

    http://www.cnblogs.com/baibaluo/archive/2012/12/24/2748468.html#2590289 公司有一个应用,多个线程从activeMQ中取消息,随着 ...

  5. 基于PySpark的网络服务异常检测系统 (四) Mysql与SparkSQL对接同步数据 kmeans算法计算预测异常

    基于Django Restframework和Spark的异常检测系统,数据库为MySQL.Redis, 消息队列为Celery,分析服务为Spark SQL和Spark Mllib,使用kmeans ...

  6. 网络KPI异常检测之时序分解算法

    时间序列数据伴随着我们的生活和工作.从牙牙学语时的“1, 2, 3, 4, 5, ……”到房价的走势变化,从金融领域的刷卡记录到运维领域的核心网性能指标.时间序列中的规律能加深我们对事物和场景的认识, ...

  7. Python机器学习笔记 异常点检测算法——Isolation Forest

    Isolation,意为孤立/隔离,是名词,其动词为isolate,forest是森林,合起来就是“孤立森林”了,也有叫“独异森林”,好像并没有统一的中文叫法.可能大家都习惯用其英文的名字isolat ...

  8. isolation forest进行异常点检测

    一.简介 孤立森林(Isolation Forest)是另外一种高效的异常检测算法,它和随机森林类似,但每次选择划分属性和划分点(值)时都是随机的,而不是根据信息增益或者基尼指数来选择.在建树过程中, ...

  9. (转)isolation forest进行异常点检测

    原文链接:https://www.cnblogs.com/gczr/p/9156971.html 一.简介 孤立森林(Isolation Forest)是另外一种高效的异常检测算法,它和随机森林类似, ...

随机推荐

  1. 洛谷 P2949 [USACO09OPEN]工作调度Work Scheduling

    P2949 [USACO09OPEN]工作调度Work Scheduling 题目描述 Farmer John has so very many jobs to do! In order to run ...

  2. java之 ------ DAO设计模式的【具体解释】及常见设计模式的【应用】

    DAO Data Access Object(数据訪问接口) 一.场景和问题 在Java程序中.常常须要把数据持久化,也须要获取持久化的数据.可是在进行数据持久化的过程中面临诸多问题(如:数据源 不同 ...

  3. XML 解析---dom解析和sax解析

    眼下XML解析的方法主要用两种: 1.dom解析:(Document Object Model.即文档对象模型)是W3C组织推荐的解析XML的一种方式. 使用dom解析XML文档,该解析器会先把XML ...

  4. virtio netdev的创建

    Linux眼下支持至少了8种虚拟化系统: Xen KVM VMware's VMI IBM's System p IBM's System z User Mode Linux lguest IBM's ...

  5. s3c2440的IIC控制

    在tq2440和mini2440上都连接着EEPROM 它们作用也不过測试I2C总线能否用. 当中在mini2440上EEPROM型号是 AT24C08,在tq2440上这个型号是 AT24C02A. ...

  6. BZOJ 1264: [AHOI2006]基因匹配Match 树状数组+DP

    1264: [AHOI2006]基因匹配Match Description 基因匹配(match) 卡卡昨天晚上做梦梦见他和可可来到了另外一个星球,这个星球上生物的DNA序列由无数种碱基排列而成(地球 ...

  7. 除了信号触发线程与接收者线程相同的情况能直接调用到slot,其它情况都依赖事件机制(解决上面代码收不到信号的问题其实很简单,在线程的run();函数中添加一个事件循环就可以了,即加入一句exec();),信号槽不就是一个回调函数嘛

    MainWindow::MainWindow(QWidget *parent) :   QMainWindow(parent)   {   pThreadCon = new CSerialThread ...

  8. bzoj3993: [SDOI2015]星际战争(网络流)

    3993: [SDOI2015]星际战争 题目:传送门 题解: 洛谷AC了,但是因为bzoj的spj有问题所以暂时没A 一道老题目了,二分时间然后网络流判断. 每次st-->武器连时间*攻击力 ...

  9. Mysqldump逻辑备份与恢复

    文档结构: mysqldump备份影响性能,可能会把内存里面的热数据给冲刷掉,5.7后,新增一个参数,innodb_buffer_pool_dump_pct,控制每个innodb_buffer中转存活 ...

  10. POJ 1949 DP?

    题意: 有n个家务,第i个家务需要一定时间来完成,并且第i个任务必须在它 "前面的" 某些任务完成之后才能开始. 给你任务信息,问你最短需要多少时间来完成任务. 输入: 第一行n个 ...