代码如下,测试发现,是否对输入数据进行归一化/标准化对于结果没有影响:

import numpy as np
from sklearn.ensemble import IsolationForest
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import MinMaxScaler def parse_line(s):
s = s.replace("u'", "").replace("'", "").replace("(", "").replace(")", "").replace("[", "").replace("]", "")
s2 = s.split(",")
dat = [float(_) for _ in s2[1:]]
return (s2[0], dat) def get_data():
with open("feature.dat") as f:
lines = f.readlines()
return [parse_line(line) for line in lines] def train(collected_data):
input_data = [c[1] for c in collected_data]
#scaler = StandardScaler().fit(input_data)
#input_data = scaler.transform(input_data) #min_max_scaler = MinMaxScaler()
#input_data = min_max_scaler.fit_transform(input_data)
#print input_data rng = np.random.RandomState(42)
#clf = IsolationForest(max_samples=10*2, random_state=rng)
#clf = IsolationForest(max_features=5)
clf = IsolationForest(max_samples="auto", random_state=rng)
clf.fit(input_data)
pred_y = clf.predict(input_data) bad_domains = set()
for i,y in enumerate(pred_y):
if y == -1:
print "bad domains:", collected_data[i]
bad_domains.add(collected_data[i][0]) if __name__ == "__main__":
dat = get_data()
train(dat)

输出样例:

bad domains: ('openvpn.', [81.0, 5.0, 3.0, 14.0, 0.1728395061728395, 27.493827160493826, 32.76543209876543, 3.2857142857142856, 18.214285714285715, 3.0714285714285716, 3.255427209766844, 0.04938271604938271, 0.0, 0.3950617283950617, 0.12345679012345678, 0.00224517287831163])
bad domains: ('mobily.com.sa', [16.0, 1.0, 4.0, 12.0, 0.75, 47.3125, 108.8125, 1.0, 5.333333333333333, 0.0, 1.9166666666666667, 0.6875, 0.0, 0.375, 0.375, 0.0066050198150594455])
bad domains: ('vcl2728.com', [40.0, 2.0, 10.0, 27.0, 0.675, 67.125, 462.85, 3.3333333333333335, 28.555555555555557, 3.3703703703703702, 3.111111111111111, 0.025, 0.0, 0.0, 0.0, 0.00186219739292365])
bad domains: ('vkcache.com', [598.0, 1.0, 2.0, 528.0, 0.882943143812709, 47.0, 161.65886287625418, 1.0, 6.0, 0.005681818181818182, 2.453875312427234, 0.22909698996655517, 0.0, 0.11371237458193979, 0.0033444816053511705, 0.00017789795773144525])
bad domains: ('nsconcreteblock.info', [18.0, 2.0, 4.0, 18.0, 1.0, 87.0, 43.5, 1.0, 37.0, 5.0, 3.823329582775343, 1.0, 0.0, 0.0, 0.0, 0.0031928480204342275])
bad domains: ('topcdn.org', [52.0, 2.0, 4.0, 13.0, 0.25, 80.92307692307692, 56.38461538461539, 1.0, 40.92307692307692, 0.0, 4.176988788169356, 0.5, 0.0, 0.28846153846153844, 0.21153846153846154, 0.001188212927756654])
bad domains: ('bilibiligame.net', [6472.0, 165.0, 17.0, 32.0, 0.004944375772558714, 46.542954264524106, 88.28522867737948, 1.0, 18.65625, 2.84375, 3.4818361348887463, 0.9610630407911002, 0.0, 0.2376390605686032, 0.0004635352286773795, 1.659883277007961e-05])
bad domains: ('vip.', [2183.0, 386.0, 30.0, 32.0, 0.014658726523133303, 34.78515803939533, 23.834631241410904, 1.9375, 9.6875, 0.0, 2.83937270784057, 0.9436555199267064, 0.0, 0.09894640403114979, 0.011452130096197893, 6.58449220396123e-05])
bad domains: ('ixigua.com', [2707.0, 133.0, 29.0, 17.0, 0.006280014776505356, 33.71222755818249, 123.10749907646841, 1.0, 4.647058823529412, 0.8823529411764706, 1.9781718484300252, 0.9759881787957149, 0.0, 0.28075360177318065, 0.01699298115995567, 5.478911668986072e-05])
bad domains: ('expressvpn.', [890.0, 31.0, 36.0, 165.0, 0.1853932584269663, 41.89887640449438, 0.0, 1.0363636363636364, 11.224242424242425, 0.05454545454545454, 3.0592421535372565, 0.5325842696629214, 0.0, 0.0, 0.0, 0.00013408420488066506])

输入数据样例(已经提取了特征):

(u'abfxsc.com', (24, 1, 4, 11, 0.4583333333333333, 48.0, 56.041666666666664, 1.0, 8.0, 0.0, 3.0, 0.5, 0.0, 0.20833333333333334, 0.08333333333333333, 0.004340277777777778))
(u'dqdkws.cn', (71, 2, 7, 50, 0.704225352112676, 45.0, 79.859154929577471, 1.0, 6.0, 0.0, 2.4132632507067329, 0.5915492957746479, 0.0, 0.0, 0.0, 0.0015649452269170579))
(u'tcdnvod.com', (701, 51, 17, 40, 0.05706134094151213, 55.266761768901567, 56.370898716119832, 3.1749999999999998, 17.399999999999999, 0.125, 3.4810606143066232, 0.9714693295292439, 0.0, 0.39514978601997147, 0.0442225392296719, 0.00012905890248309329))
(u'0937jyg.com', (68, 4, 7, 19, 0.27941176470588236, 46.25, 67.529411764705884, 1.0, 5.3684210526315788, 0.0, 2.2469056830015672, 0.6323529411764706, 0.0, 0.0, 0.0, 0.001589825119236884))
(u'jcloud-cdn.com', (61, 3, 3, 11, 0.18032786885245902, 67.278688524590166, 66.311475409836063, 4.5454545454545459, 24.363636363636363, 0.18181818181818182, 3.5244668708659161, 0.4262295081967213, 0.0, 0.08196721311475409, 0.03278688524590164, 0.0012183235867446393))
(u'omacloud.com', (545, 8, 20, 29, 0.05321100917431193, 46.315596330275227, 30.722935779816513, 1.9655172413793103, 17.793103448275861, 0.0, 3.3836270422458083, 1.0, 0.0, 0.10825688073394496, 0.022018348623853212, 0.00019808256081134618))
(u'serverss.top', (144, 1, 15, 22, 0.1527777777777778, 46.604166666666664, 50.145833333333336, 1.0, 4.5909090909090908, 0.0, 2.1594720075625, 0.5277777777777778, 0.0, 0.2777777777777778, 0.06944444444444445, 0.00074504544777231408))
(u'ctripgslb.com', (601, 9, 10, 34, 0.056572379367720464, 60.512479201331118, 157.12479201331115, 3.0588235294117645, 17.911764705882351, 0.91176470588235292, 3.3912394967901913, 0.8585690515806988, 0.0, 0.3594009983361065, 0.016638935108153077, 0.00013748350197976243))
(u'kas-labs.com', (54, 2, 8, 15, 0.2777777777777778, 55.888888888888886, 142.37037037037038, 1.0, 12.466666666666667, 1.6000000000000001, 3.0989151803147923, 0.5, 0.0, 0.09259259259259259, 0.09259259259259259, 0.0016567263088137839))
(u'mccdnglb.com', (365, 4, 6, 21, 0.057534246575342465, 51.161643835616438, 98.161643835616445, 3.5238095238095237, 18.428571428571427, 0.19047619047619047, 3.4116298602195974, 0.989041095890411, 0.0, 0.16164383561643836, 0.01643835616438356, 0.00026775195458926852))
(u'localhost.', (28, 4, 3, 10, 0.35714285714285715, 41.142857142857146, 172.35714285714286, 1.8999999999999999, 10.9, 1.8999999999999999, 2.3999999999999999, 0.14285714285714285, 0.0, 0.0, 0.0, 0.004340277777777778))
(u'xdy-cdn.cn', (473, 5, 2, 50, 0.10570824524312897, 54.780126849894295, 46.545454545454547, 3.0, 14.74, 0.0, 3.1343677127142864, 0.5750528541226215, 0.0, 0.0, 0.0, 0.00019296823742811933))
(u'labkas.com', (24, 2, 6, 10, 0.4166666666666667, 56.666666666666664, 66.833333333333329, 2.0, 17.399999999999999, 1.7, 3.6751008468322333, 0.08333333333333333, 0.0, 0.0, 0.0, 0.0036764705882352941))
(u'site.', (62, 5, 22, 14, 0.22580645161290322, 43.322580645161288, 50.774193548387096, 1.9285714285714286, 11.785714285714286, 0.21428571428571427, 3.0365341332026929, 0.5806451612903226, 0.0, 0.11290322580645161, 0.06451612903225806, 0.0018615040953090098))
(u'ft25882.com', (39, 2, 5, 20, 0.5128205128205128, 49.0, 92.871794871794876, 1.0, 8.0, 0.0, 3.0, 0.5384615384615384, 0.0, 0.3076923076923077, 0.05128205128205128, 0.0026164311878597592))
(u'douyuyuba.com', (232, 4, 7, 115, 0.4956896551724138, 62.650862068965516, 97.504310344827587, 2.0, 21.530434782608694, 0.97391304347826091, 3.4599350912323117, 0.5560344827586207, 0.0, 0.25, 0.008620689655172414, 0.00034399724802201581))
(u'win.', (334, 7, 39, 23, 0.0688622754491018, 42.604790419161674, 60.008982035928142, 1.8695652173913044, 13.217391304347826, 0.21739130434782608, 2.9398183078690807, 0.7904191616766467, 0.0, 0.3772455089820359, 0.041916167664670656, 0.00035137034434293746))
(u'affise.com', (73, 3, 10, 10, 0.136986301369863, 49.246575342465754, 146.56164383561645, 1.0, 8.5, 0.0, 2.5368841208873407, 0.6027397260273972, 0.0, 0.273972602739726, 0.0547945205479452, 0.0013908205841446453))
(u'stripcdn.com', (46, 3, 8, 17, 0.3695652173913043, 44.043478260869563, 160.54347826086956, 1.0, 3.8823529411764706, 0.52941176470588236, 1.8718920798583554, 0.391304347826087, 0.0, 0.10869565217391304, 0.10869565217391304, 0.0024679170779861796))
(u'doonoo.cn', (198, 1, 8, 19, 0.09595959595959595, 42.111111111111114, 66.060606060606062, 1.0, 3.1052631578947367, 0.0, 1.6286506585399816, 0.5, 0.0, 0.2222222222222222, 0.025252525252525252, 0.00059966418805468941))
(u'nii.ac.jp', (34, 3, 8, 16, 0.47058823529411764, 43.029411764705884, 34.529411764705884, 1.3125, 7.3125, 0.1875, 2.4667777025215347, 0.4411764705882353, 0.0, 0.08823529411764706, 0.08823529411764706, 0.0034176349965823649))
(u'78dm.net', (41, 5, 6, 11, 0.2682926829268293, 39.146341463414636, 66.634146341463421, 1.0, 3.3636363636363638, 0.18181818181818182, 1.3510446035661767, 0.7317073170731707, 0.0, 0.3170731707317073, 0.04878048780487805, 0.0031152647975077881))
(u'gosuncdn.com', (587, 5, 36, 40, 0.06814310051107325, 53.325383304940374, 204.61328790459967, 3.25, 15.699999999999999, 0.0, 3.3370338393801235, 0.5724020442930153, 0.0, 0.09540034071550256, 0.010221465076660987, 0.00015973420228739378))
(u'gfnormal04aj.com', (68, 2, 2, 33, 0.4852941176470588, 62.0, 58.970588235294116, 1.0, 16.0, 0.0, 3.4444634232339926, 0.5147058823529411, 0.0, 0.25, 0.058823529411764705, 0.0011859582542694497))
(u'mediatoday.co.kr', (13, 1, 3, 12, 0.9230769230769231, 50.46153846153846, 100.61538461538461, 1.0, 4.583333333333333, 0.0, 1.7623953076615158, 1.0, 0.0, 0.23076923076923078, 0.23076923076923078, 0.007621951219512195))
(u'qinsx.cn', (127, 4, 8, 14, 0.11023622047244094, 29.811023622047244, 51.362204724409452, 1.0, 1.9285714285714286, 0.0, 0.9285714285714286, 0.5905511811023622, 0.0, 0.30708661417322836, 0.06299212598425197, 0.0013206550449022716))

参考:http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html#sklearn.ensemble.IsolationForest

使用isolation forest进行dns网络流量异常检测的更多相关文章

  1. 5-Spark高级数据分析-第五章 基于K均值聚类的网络流量异常检测

    据我们所知,有‘已知的已知’,有些事,我们知道我们知道:我们也知道,有 ‘已知的未知’,也就是说,有些事,我们现在知道我们不知道.但是,同样存在‘不知的不知’——有些事,我们不知道我们不知道. 上一章 ...

  2. 基于PySpark的网络服务异常检测系统 阶段总结(二)

    在上篇博文中介绍了网络服务异常检测的大概,本篇将详细介绍SVDD和Isolation Forest这两种算法 1. SVDD算法 SVDD的英文全称是Support Vector Data Descr ...

  3. alluxio网络流量异常分析【转】

    1. 介绍 2. 准备工作 2.1 tcpdump 2.2 winshark 2.3 安装iftop 2.4 alluxio网络通信相关的端口 3.iftop 锁定消耗流量最大的端口 4. dump数 ...

  4. activeMQ消费消息时网络流量异常大的问题

    http://www.cnblogs.com/baibaluo/archive/2012/12/24/2748468.html#2590289 公司有一个应用,多个线程从activeMQ中取消息,随着 ...

  5. 基于PySpark的网络服务异常检测系统 (四) Mysql与SparkSQL对接同步数据 kmeans算法计算预测异常

    基于Django Restframework和Spark的异常检测系统,数据库为MySQL.Redis, 消息队列为Celery,分析服务为Spark SQL和Spark Mllib,使用kmeans ...

  6. 网络KPI异常检测之时序分解算法

    时间序列数据伴随着我们的生活和工作.从牙牙学语时的“1, 2, 3, 4, 5, ……”到房价的走势变化,从金融领域的刷卡记录到运维领域的核心网性能指标.时间序列中的规律能加深我们对事物和场景的认识, ...

  7. Python机器学习笔记 异常点检测算法——Isolation Forest

    Isolation,意为孤立/隔离,是名词,其动词为isolate,forest是森林,合起来就是“孤立森林”了,也有叫“独异森林”,好像并没有统一的中文叫法.可能大家都习惯用其英文的名字isolat ...

  8. isolation forest进行异常点检测

    一.简介 孤立森林(Isolation Forest)是另外一种高效的异常检测算法,它和随机森林类似,但每次选择划分属性和划分点(值)时都是随机的,而不是根据信息增益或者基尼指数来选择.在建树过程中, ...

  9. (转)isolation forest进行异常点检测

    原文链接:https://www.cnblogs.com/gczr/p/9156971.html 一.简介 孤立森林(Isolation Forest)是另外一种高效的异常检测算法,它和随机森林类似, ...

随机推荐

  1. 重启rsyslog服务时出现问题(误删/var/log/messages解决方案)

    今天修改了/etc/rsyslog.conf中的内容后,想着要通过systemctl restart rsyslog重启服务,但是执行完命令后,总感觉/etc/rsyslog.conf中修改的内容没有 ...

  2. C++开发人脸性别识别教程(7)——搭建MFC框架之界面绘制

    在之前的博客中我们已经将项目中用到的算法表述完成,包含人脸检測算法以及四种性别识别算法,在这篇博客中我们将着手搭建主要的MFC框架. 一.框架概况 在这篇博文中我们将搭建最主要的MFC框架.绘制MFC ...

  3. 在MAC下怎样用SSH连接远程LINUXserver

    首页,打开MAC的命令终端,检查是不是用root用的登录的,假设不是的话请输入命令:sudo -i切换到root. 然后,输入:ssh ip地址,假设主机存在的话会提示你输入password,输入正确 ...

  4. 《从零開始学Swift》学习笔记(Day 46)——下标重写

    原创文章.欢迎转载.转载请注明:关东升的博客 下标是一种特殊属性. 子类属性重写是重写属性的getter和setter訪问器,对下标的重写也是重写下标的getter和setter訪问器. 以下看一个演 ...

  5. java.util.concurrent.ExecutionException: org.apache.catalina.LifecycleException: Failed to start com

    错误如题. 原因:web.xml中的servlet映射<url-pattern> 配置错误 改动正确就可以. 我直接删除了,bug就攻克了. 另一个问题是 xxx.jar fail to ...

  6. Android 自己定义RecyclerView 实现真正的Gallery效果

    转载请标明出处:http://blog.csdn.net/lmj623565791/article/details/38173061 .本文出自:[张鸿洋的博客] 上一篇博客我使用自己定义Horizo ...

  7. 深入分析Java中的I/O类的特征及适用场合

    Java中有40多个与输入输出有关的类.假设不理清它们之间的关系.就不能灵活地运用它们. 假设从流的流向来分,可分为输入流和输出流,而输入流和输出流又都可分为字节流和字符流.因而可将Java中的I/O ...

  8. 使用wpa_supplicant连接WIFI

    让树莓派可以开机就连接制定的wifi, 可以通过wpa_supplicant来实现. 在 /etc/wpa_supplicant 下写一个配置文件: wpa_supplicant.conf 内容如下: ...

  9. mybatis与spring整合配置

    mybatis与spring整合配置: 第一种方式:(此处配置扫描的包路径.注解.每个mapper类上面需要加@Repository才能纳入spring的bean管理器中) <!-- 自动扫描m ...

  10. JS常用框架及各自特点

    JavaScript 是面向对象的脚本语言,长期以来用作 Web 浏览器应用程序的客户端脚本接口React:起源于Facebook,并与2013年开源,是一个用于构建用户界面(主要是UI)的JavaS ...