Prior odd:

The idea is to take the odds for something happening (against it not happening), which we´ll write as prior odds.

For example:

The chances of rain are 206 in 365. Then the Prior odd = 206:159

Likelihood ratio:

However, after opening your eyes and taking a look outside, you notice it’s cloudy. Suppose the chances of having a cloudy morning on a rainy day are 9 out of 10 — that means that only one out of 10 rainy days start out with blue skies. But sometimes there are also clouds without rain: the chances of having clouds on a rainless day are 1 in 10. Now how much higher are the chances of clouds on a rainy day compared to a rainless day?

The answer is that the chances of clouds are nine times higher on a rainy day than on a rainless day: on a rainy day the chances are 9 out of 10, whereas on a rainless day the chances of clouds are 1 out of 10, and that makes nine times higher.

So we concluded that on a cloudy morning, we have: likelihood ratio = (9/10) / (1/10) = 9

Posterior odds:

posterior odds = likelihood ratio × prior odds

For example:

Apply the Bayes rule to calculate the posterior odds for rain having observed clouds in the morning in Helsinki.

As we calculated above, the prior odds for rain is 206:159 and the likelihood ratio for observing clouds is 9

posterior odds = 9 * 206 / 159


Consider mammographic screening for breast cancer. Using made up percentages for the sake of simplifying the numbers, let’s assume that five in 100 women have breast cancer. Suppose that if a person has breast cancer, then the mammograph test will find it 80 times out of 100. When the test comes out suggesting that breast cancer is present, we say that the result is positive, although of course there is nothing positive about this for the person being tested. (A technical way of saying this is that the sensitivity of the test is 80%.)

The test may also fail in the other direction, namely to indicate breast cancer when none exists. This is called a false positive finding. Suppose that if the person being tested actually doesn’t have breast cancer, the chances that the test nevertheless comes out positive are 10 in 100.

Based on the above probabilities, you are be able to calculate the likelihood ratio. You'll find use for it in the next exercise. If you forgot how the likelihood ratio is calculated, you may wish to check the terminology box earlier in this section and revisit the rain example.

Consider the above breast cancer scenario. An average woman takes the mammograph test and gets a positive test result suggesting breast cancer. What do you think are the odds that she has breast cancer given the observation that the test is positive?

Hints:

  1. Start by calculating the prior odds.
  2. Determine the probability of the observation in case of the event (cancer).
  3. Determine the probability of the observation in case of no event (no cancer).
  4. Obtain the likelihood ratio as the ratio of the above two probabilities.
  5. Finally, multiply the prior odds by the likelihood ratio.

Enter the posterior odds as your solution below. Give the answer in the form xx:yy where xx and yy are numbers, without simplifying the expression even if both sides have a common factor.


40:95

Prior: 5:95

Likelihood Ratio: (0.05 * 0.8) / (0.05 * 0.1) = 8

Posterior = 8 * 5 : 95 = 40: 95

First, let's express the probabilities in terms of odds. The prior odds describe the situation before getting the test result. Since five out of 100 women have breast cancer, there is on the average five women with breast cancer for every 95 women without breast cancer, and therefore, the prior odds are 5:95. The likelihood ratio is the probability of a positive result in case of cancer divided by the probability of a positive result in case of no cancer. With the above numbers, this is given by 80/100 divided by 10/100, which is 8. The Bayes rule now gives the posterior odds of breast cancer given the positive test result: posterior odds = 8 × 5:95 = 40:95, which is the correct answer. So despite the positive test result, the odds are actually against the person having breast cancer: among the women who are tested positive, there are on the average 40 women with breast cancer for every 95 women without breast cancer. Note: If we would like to express the chances of breast cancer given the positive test result as a probability (even though this is not what the exercise asked for), we would consider the 40 cases with cancer and the 95 cases without cancer together, and calculate what portion of the total 40 + 95 = 135 individuals have cancer. This gives the result 40 out of 135, or about 30%. This is much higher than the prevalence of breast cancer, 5 in 100, or 5%, but still the chances are that the person has no cancer. If you compare the solution to your intuitive answer, they tend to be quite different for most people. This demonstrates how poorly suited out intuition is for handling uncertain and conflicting information.

Resource:

https://www.youtube.com/watch?v=tRE6mKAIkno

https://course.elementsofai.com/3/2

[Algorithms] The Bayes Rule的更多相关文章

  1. 用贝叶斯定理解决三门问题并用Python进行模拟(Bayes' Rule Monty Hall Problem Simulation Python)

    三门问题(Monty Hall problem)也称为蒙提霍尔问题或蒙提霍尔悖论,出自美国的电视游戏节目<Let’s Make a Deal>.问题名字来自该节目的主持人蒙提·霍尔(Mon ...

  2. Generative Learning algorithms

    "generative algorithm models how the data was generated in order to categorize a signal. It ask ...

  3. [Bayesian] “我是bayesian我怕谁”系列 - Naive Bayes+prior

    先明确一些潜规则: 机器学习是个collection or set of models,一切实践性强的模型都会被归纳到这个领域,没有严格的定义,’有用‘可能就是唯一的共性. 机器学习大概分为三个领域: ...

  4. [Bayesian] “我是bayesian我怕谁”系列 - Naive Bayes with Prior

    先明确一些潜规则: 机器学习是个collection or set of models,一切实践性强的模型都会被归纳到这个领域,没有严格的定义,’有用‘可能就是唯一的共性. 机器学习大概分为三个领域: ...

  5. an introduction to conditional random fields

    1.Structured prediction methods are essentially a combination of classification and graphical modeli ...

  6. The Joys of Conjugate Priors

    The Joys of Conjugate Priors (Warning: this post is a bit technical.) Suppose you are a Bayesian rea ...

  7. Introduction to Machine Learning

    Chapter 1 Introduction 1.1 What Is Machine Learning? To solve a problem on a computer, we need an al ...

  8. How do I learn machine learning?

    https://www.quora.com/How-do-I-learn-machine-learning-1?redirected_qid=6578644   How Can I Learn X? ...

  9. How do I learn mathematics for machine learning?

    https://www.quora.com/How-do-I-learn-mathematics-for-machine-learning   How do I learn mathematics f ...

随机推荐

  1. RocketMQ(2)

    1. 消费端集群消费(负载均衡) 示例代码: /** * Producer,发送消息 * */ public class Producer { public static void main(Stri ...

  2. $P5240 Derivation$

    神仙题. 第一场月赛的题目我到第二场月赛完了才写[由此可见我是真的菜 题目就是个大模拟加乘显然,幂的话需要将原函数.导函数的函数值用扩展欧拉定理展开 \(log\) 层.时间复杂度 \(O(T |S| ...

  3. php域名授权实现方法

    php域名授权实现方法 域名授权的目的:维护知识产权. php实现域名授权有很多方法,比如: 1.本地验证法. 2.在线验证法. 不管是那种方法,其实原理都是一样的. 今天我就举一个本地验证的例子! ...

  4. (转)Vue 爬坑之路(三)—— 使用 vue-router 跳转页面

    使用 Vue.js 做项目的时候,一个页面是由多个组件构成的,所以在跳转页面的时候,并不适合用传统的 href,于是 vue-router 应运而生. 官方文档: https://router.vue ...

  5. Android 将图片网址url转化为bitmap

    public Bitmap returnBitMap(final String url){ new Thread(new Runnable() { @Override public void run( ...

  6. 数据库SQL语句的操作

    SQLServer数据库的基础知识的回顾: 1)主数据文件:*.mdf 2)次要数据文件:*.ndf 3)日志文件:*.ldf 每个数据库至少要包含两个文件:一个数据文件和一个日志文件 如何查看SQL ...

  7. html5——:hover事件触发自己的:afert伪元素事件

    :hover事件触发自己的:afert伪元素事件中间是没有空格的

  8. JS——隐式全局变量

    在函数中,var声明的是局部变量,不带var的是隐式全局变量 <script> function fn() { var a = b = c = 0;//a是局部变量,b.c是全局变量 va ...

  9. CSS——font

    行高的量取方式: 1.第一行可设置margin-top值.然后将第一文字顶部到第二行文字顶部的值作为行高的值(要注意对齐方式) 2.将 3.电视上 font:12px/1.5//字体12px,行高1. ...

  10. 扩增子图表解读1箱线图:Alpha多样性

    箱线图 箱形图(Box-plot)又称为盒须图.盒式图或箱线图,是一种用作显示一组数据分散情况资料的统计图.因形状如箱子而得名.在宏基因组领域,常用于展示样品组中各样品Alpha多样性的分布 第一种情 ...