Prior odd:

The idea is to take the odds for something happening (against it not happening), which we´ll write as prior odds.

For example:

The chances of rain are 206 in 365. Then the Prior odd = 206:159

Likelihood ratio:

However, after opening your eyes and taking a look outside, you notice it’s cloudy. Suppose the chances of having a cloudy morning on a rainy day are 9 out of 10 — that means that only one out of 10 rainy days start out with blue skies. But sometimes there are also clouds without rain: the chances of having clouds on a rainless day are 1 in 10. Now how much higher are the chances of clouds on a rainy day compared to a rainless day?

The answer is that the chances of clouds are nine times higher on a rainy day than on a rainless day: on a rainy day the chances are 9 out of 10, whereas on a rainless day the chances of clouds are 1 out of 10, and that makes nine times higher.

So we concluded that on a cloudy morning, we have: likelihood ratio = (9/10) / (1/10) = 9

Posterior odds:

posterior odds = likelihood ratio × prior odds

For example:

Apply the Bayes rule to calculate the posterior odds for rain having observed clouds in the morning in Helsinki.

As we calculated above, the prior odds for rain is 206:159 and the likelihood ratio for observing clouds is 9

posterior odds = 9 * 206 / 159


Consider mammographic screening for breast cancer. Using made up percentages for the sake of simplifying the numbers, let’s assume that five in 100 women have breast cancer. Suppose that if a person has breast cancer, then the mammograph test will find it 80 times out of 100. When the test comes out suggesting that breast cancer is present, we say that the result is positive, although of course there is nothing positive about this for the person being tested. (A technical way of saying this is that the sensitivity of the test is 80%.)

The test may also fail in the other direction, namely to indicate breast cancer when none exists. This is called a false positive finding. Suppose that if the person being tested actually doesn’t have breast cancer, the chances that the test nevertheless comes out positive are 10 in 100.

Based on the above probabilities, you are be able to calculate the likelihood ratio. You'll find use for it in the next exercise. If you forgot how the likelihood ratio is calculated, you may wish to check the terminology box earlier in this section and revisit the rain example.

Consider the above breast cancer scenario. An average woman takes the mammograph test and gets a positive test result suggesting breast cancer. What do you think are the odds that she has breast cancer given the observation that the test is positive?

Hints:

  1. Start by calculating the prior odds.
  2. Determine the probability of the observation in case of the event (cancer).
  3. Determine the probability of the observation in case of no event (no cancer).
  4. Obtain the likelihood ratio as the ratio of the above two probabilities.
  5. Finally, multiply the prior odds by the likelihood ratio.

Enter the posterior odds as your solution below. Give the answer in the form xx:yy where xx and yy are numbers, without simplifying the expression even if both sides have a common factor.


40:95

Prior: 5:95

Likelihood Ratio: (0.05 * 0.8) / (0.05 * 0.1) = 8

Posterior = 8 * 5 : 95 = 40: 95

First, let's express the probabilities in terms of odds. The prior odds describe the situation before getting the test result. Since five out of 100 women have breast cancer, there is on the average five women with breast cancer for every 95 women without breast cancer, and therefore, the prior odds are 5:95. The likelihood ratio is the probability of a positive result in case of cancer divided by the probability of a positive result in case of no cancer. With the above numbers, this is given by 80/100 divided by 10/100, which is 8. The Bayes rule now gives the posterior odds of breast cancer given the positive test result: posterior odds = 8 × 5:95 = 40:95, which is the correct answer. So despite the positive test result, the odds are actually against the person having breast cancer: among the women who are tested positive, there are on the average 40 women with breast cancer for every 95 women without breast cancer. Note: If we would like to express the chances of breast cancer given the positive test result as a probability (even though this is not what the exercise asked for), we would consider the 40 cases with cancer and the 95 cases without cancer together, and calculate what portion of the total 40 + 95 = 135 individuals have cancer. This gives the result 40 out of 135, or about 30%. This is much higher than the prevalence of breast cancer, 5 in 100, or 5%, but still the chances are that the person has no cancer. If you compare the solution to your intuitive answer, they tend to be quite different for most people. This demonstrates how poorly suited out intuition is for handling uncertain and conflicting information.

Resource:

https://www.youtube.com/watch?v=tRE6mKAIkno

https://course.elementsofai.com/3/2

[Algorithms] The Bayes Rule的更多相关文章

  1. 用贝叶斯定理解决三门问题并用Python进行模拟(Bayes' Rule Monty Hall Problem Simulation Python)

    三门问题(Monty Hall problem)也称为蒙提霍尔问题或蒙提霍尔悖论,出自美国的电视游戏节目<Let’s Make a Deal>.问题名字来自该节目的主持人蒙提·霍尔(Mon ...

  2. Generative Learning algorithms

    "generative algorithm models how the data was generated in order to categorize a signal. It ask ...

  3. [Bayesian] “我是bayesian我怕谁”系列 - Naive Bayes+prior

    先明确一些潜规则: 机器学习是个collection or set of models,一切实践性强的模型都会被归纳到这个领域,没有严格的定义,’有用‘可能就是唯一的共性. 机器学习大概分为三个领域: ...

  4. [Bayesian] “我是bayesian我怕谁”系列 - Naive Bayes with Prior

    先明确一些潜规则: 机器学习是个collection or set of models,一切实践性强的模型都会被归纳到这个领域,没有严格的定义,’有用‘可能就是唯一的共性. 机器学习大概分为三个领域: ...

  5. an introduction to conditional random fields

    1.Structured prediction methods are essentially a combination of classification and graphical modeli ...

  6. The Joys of Conjugate Priors

    The Joys of Conjugate Priors (Warning: this post is a bit technical.) Suppose you are a Bayesian rea ...

  7. Introduction to Machine Learning

    Chapter 1 Introduction 1.1 What Is Machine Learning? To solve a problem on a computer, we need an al ...

  8. How do I learn machine learning?

    https://www.quora.com/How-do-I-learn-machine-learning-1?redirected_qid=6578644   How Can I Learn X? ...

  9. How do I learn mathematics for machine learning?

    https://www.quora.com/How-do-I-learn-mathematics-for-machine-learning   How do I learn mathematics f ...

随机推荐

  1. 动态规划DP入门

    百度百科↓ 动态规划(dynamic programming)是运筹学的一个分支,是求解决策过程(decision process)最优化的数学方法.20世纪50年代初美国数学家R.E.Bellman ...

  2. [Luogu 1312] noip11 Mayan游戏

    [Luogu 1312] noip11 Mayan游戏 Problem: Mayan puzzle是最近流行起来的一个游戏.游戏界面是一个 7 行5 列的棋盘,上面堆放着一些方块,方块不能悬空堆放,即 ...

  3. 阿里邮箱绑定Foxmail失败的解决办法

    收件服务器地址: POP 服务器地址:pop3.mxhichina.com 端口110,SSL 加密端口995 或 IMAP 服务器地址:imap.mxhichina.com 端口143,SSL 加密 ...

  4. day02_12/12/2016_bean的实例化之构造器方式

  5. 涨知识 --- VI

    1.空类所占空间大小 空类所占空间为1,单一继承的空类空间也为1,多继承的空类空间还是1.但是虚继承涉及虚表(虚指针),所以sizeof(C)的大小为4. 2.内联函数与宏定义 Ans:内联函数和普通 ...

  6. Java_注解之一

    注解可以替换复杂的hbm.xml文件,使得程序的开发大大简化 @Override    :子类重写父类方法 @Test :junit测试 @Before :测试之前执行 @SuppressWarnin ...

  7. Win32双缓冲讲解

    双缓冲是一种思想,也是一种方法,它可以避免频繁的闪烁问题.如果在画布上直接绘画,由于每次都会重新擦除然后重绘,绘制需要时间,所以肉眼会看到闪烁问题.解决的方法就是在内存中先创建出一个内存dc,然后在内 ...

  8. PHP基础知识测试题及解析

      本试题共40道选择题,10道判断题,考试时间1个半小时 一:选择题(单项选择,每题2分): 1. LAMP具体结构不包含下面哪种(A ) A:Windows系统 B:Apache服务器 C:MyS ...

  9. html5——动画案例(无缝滚动)

    无缝滚动:是两组拼在一起的 <!DOCTYPE html> <html lang="en"> <head> <meta charset=& ...

  10. 白盒-CNN纹理深度可视化: 使用MIT Place 场景预训练模型

    MIT发文:深度视觉的量化表示................ Places2 是一个场景图像数据集,包含 1千万张 图片,400多个不同类型的场景环境,可用于以场景和环境为应用内容的视觉认知任务. ...