近期在优化hiveSQL。

以下是一段排序,分组后取每组第一行记录的SQL

  1. INSERT OVERWRITE TABLE t_wa_funnel_distinct_temp PARTITION (pt='${SRCTIME}')
  2. SELECT
  3. bussiness_id,
  4. cookie_id,
  5. session_id,
  6. funnel_id,
  7. group_first(funnel_name) funnel_name,
  8. step_id,
  9. group_first(step_name) step_name,
  10. group_first(log_type) log_type,
  11. group_first(url_pattern) url_pattern,
  12. group_first(url) url,
  13. group_first(refer) refer,
  14. group_first(log_time) log_time,
  15. group_first(is_new_visitor) is_new_visitor,
  16. group_first(is_mobile_traffic) is_mobile_traffic,
  17. group_first(is_bounce) is_bounce,
  18. group_first(campaign_name) campaign_name,
  19. group_first(group_name) group_name,
  20. group_first(slot_name) slot_name,
  21. group_first(source_type) source_type,
  22. group_first(next_page) next_page,
  23. group_first(continent) continent,
  24. group_first(sub_continent_region) sub_continent_region,
  25. group_first(country) country,
  26. group_first(region) region,
  27. group_first(city) city,
  28. group_first(language) language,
  29. group_first(browser) browser,
  30. group_first(os) os,
  31. group_first(screen_color) screen_color,
  32. group_first(screen_resolution) screen_resolution,
  33. group_first(flash_version) flash_version,
  34. group_first(java) java,
  35. group_first(host) host
  36. FROM
  37. (   SELECT *
  38. FROM r_wa_funnel
  39. WHERE pt='${SRCTIME}'
  40. ORDER BY bussiness_id, cookie_id, session_id, funnel_id, step_id, log_time ASC
  41. ) t1
  42. GROUP BY pt, bussiness_id, cookie_id, session_id, funnel_id, step_id;

group_first: 自己定义函数。用户取每组第一个字段

${SRCTIME}:
由外部oozie调度传入, 作为时间分区,精确到小时.eg: 2011.11.01.21



以下在hive上以SRCTIME = 2011.11.01.21
运行以上SQL. 2011.11.01.21小时分区记录数有10435486

运行时间:

从上面能够看出,reduce阶段仅仅有一个reduce, 这是由于ORDER BY是全局排序,hive仅仅能通过一个reduce进行排序

从业务需求来看, 仅仅要按bussiness_id, cookie_id, session_id, funnel_id, step_id分组,组内按

log_time升序排序就可以.



OK, 这样能够採用hive提供的distribute by 和 sort by,这样能够充分利用hadoop资源, 在多个

reduce中局部按log_time 排序



优化有的hive代码:

  1. INSERT OVERWRITE TABLE t_wa_funnel_distinct PARTITION (pt='2011.11.01.21')
  2. SELECT
  3. bussiness_id,
  4. cookie_id,
  5. session_id,
  6. funnel_id,
  7. group_first(funnel_name) funnel_name,
  8. step_id,
  9. group_first(step_name) step_name,
  10. group_first(log_type) log_type,
  11. group_first(url_pattern) url_pattern,
  12. group_first(url) url,
  13. group_first(refer) refer,
  14. group_first(log_time) log_time,
  15. group_first(is_new_visitor) is_new_visitor,
  16. group_first(is_mobile_traffic) is_mobile_traffic,
  17. group_first(is_bounce) is_bounce,
  18. group_first(campaign_name) campaign_name,
  19. group_first(group_name) group_name,
  20. group_first(slot_name) slot_name,
  21. group_first(source_type) source_type,
  22. group_first(next_page) next_page,
  23. group_first(continent) continent,
  24. group_first(sub_continent_region) sub_continent_region,
  25. group_first(country) country,
  26. group_first(region) region,
  27. group_first(city) city,
  28. group_first(language) language,
  29. group_first(browser) browser,
  30. group_first(os) os,
  31. group_first(screen_color) screen_color,
  32. group_first(screen_resolution) screen_resolution,
  33. group_first(flash_version) flash_version,
  34. group_first(java) java,
  35. group_first(host) host
  36. FROM
  37. (   SELECT *
  38. FROM r_wa_funnel
  39. WHERE pt='2011.11.01.21'
  40. distribute by bussiness_id, cookie_id, session_id, funnel_id, step_id sort by log_time ASC
  41. ) t1
  42. GROUP BY bussiness_id, cookie_id, session_id, funnel_id, step_id;

运行时间:

第一个须要运行6:43, 而优化有仅仅要运行0:35秒。性能得到大幅提升

hive SQL优化之distribute by和sort by的更多相关文章

  1. Hive SQL 优化面试题整理

    Hive优化目标 在有限的资源下,执行效率更高 常见问题: 数据倾斜 map数设置 reduce数设置 其他 Hive执行 HQL --> Job --> Map/Reduce 执行计划 ...

  2. 深入浅出Hive企业级架构优化、Hive Sql优化、压缩和分布式缓存(企业Hadoop应用核心产品)

    一.本课程是怎么样的一门课程(全面介绍)    1.1.课程的背景       作为企业Hadoop应用的核心产品,Hive承载着FaceBook.淘宝等大佬 95%以上的离线统计,很多企业里的离线统 ...

  3. Hive SQL优化思路

    Hive的优化主要分为:配置优化.SQL语句优化.任务优化等方案.其中在开发过程中主要涉及到的可能是SQL优化这块. 优化的核心思想是: 减少数据量(例如分区.列剪裁) 避免数据倾斜(例如加参数.Ke ...

  4. hive的高级查询(group by、 order by、 join 、 distribute by、sort by、 clusrer by、 union all等)

    查询操作 group by. order by. join . distribute by. sort by. clusrer by. union all 底层的实现 mapreduce 常见的聚合操 ...

  5. [转]hive中order by,distribute by,sort by,cluster by

    转至http://my.oschina.net/repine/blog/296562 order by,distribute by,sort by,cluster by  查询使用说明 1 2 3 4 ...

  6. hive中order by、distribute by、sort by和cluster by的区别和联系

    hive中order by.distribute by.sort by和cluster by的区别和联系 order by order by 会对数据进行全局排序,和oracle和mysql等数据库中 ...

  7. Hive使用Calcite CBO优化流程及SQL优化实战

    目录 Hive SQL执行流程 Hive debug简单介绍 Hive SQL执行流程 Hive 使用Calcite优化 Hive Calcite优化流程 Hive Calcite使用细则 Hive向 ...

  8. 016-Hadoop Hive sql语法详解6-job输入输出优化、数据剪裁、减少job数、动态分区

    一.job输入输出优化 善用muti-insert.union all,不同表的union all相当于multiple inputs,同一个表的union all,相当map一次输出多条 示例 二. ...

  9. Hive篇---Hive使用优化

    一.前述 本节主要描述Hive的优化使用,Hive的优化着重强调一个 把Hive SQL 当做Mapreduce程序去优化 二.主要优化点 1.Hive运行方式:本地模式集群模式 本地模式开启本地模式 ...

随机推荐

  1. ble_app_hrs心率程序 nrf51822

    所用程序为: H:\keil\ARM\Device\Nordic\nrf51822\Board\pca10001\s110\ble_app_hrs 上面的路径是安装sdk之后生成在keil软件所在目录 ...

  2. linux 配置IP地址

    linux 配置IP网址能够使用neat,netconfig,ifconfig等进行配置,当中前两个实用户界面,第三个命令仅仅是暂时设置IP,机器重新启动后配置将丢失. 有时候图形用户界面的程序难以获 ...

  3. Mysql数据库存储引擎--转

    原文地址:http://pangge.blog.51cto.com/6013757/1303893 简单介绍 存储引擎就是指表的类型.数据库的存储引擎决定了表在计算机中的存储方式.存储引擎的概念是My ...

  4. BZOJ3674可持久化并查集(模板)

    没什么可说的,就是一个可持久化线段树维护一个数组fa以及deep按秩合并好了 注意一下强制在线 蒟蒻的我搞了好长时间QAQ 贴代码: #include<cstdio> #include&l ...

  5. Mac 终端操作数据库

    名词解释: 事务:一个事务(transaction)中的所有操作,要么全部完成,要么全部不完成,不会结束在中间某个环节.事务在执行过程中发生错误,会被回滚(Rollback)到事务开始前的状态,就像这 ...

  6. CISP/CISA 每日一题 八

    CISA 每日一题(答)网关执行电子邮件格式转换 电子邮件安全——加密 大文件——对称加密 不可否认——非对称 哈希——完整性     电子银行主要风险: 战略.经营和声誉上的风险 双SSP每日一题 ...

  7. WPF 入门《数据绑定》

    简单而言, 数据绑定是一种关系, 这种关系告诉WPF 从一个源目标对象中提取一些信息, 并且使用该信息设置为目标对象的属性.目标属性总是依赖项属性, 并且通常位于WPF元素中. 然而, 源对象可以是任 ...

  8. http 500 Internal Server Error的错误 ajax请求SpringMVC后台中返回500 Internal Server Error

    使用httprequester接口测试能返回数据,但是用ajax返回json格式的时候返回报500Internal Server Error. The server encountered an in ...

  9. 洛谷 P1598 垂直柱状图

    P1598 垂直柱状图 题目描述 写一个程序从输入文件中去读取四行大写字母(全都是大写的,每行不超过72个字符),然后用柱状图输出每个字符在输入文件中出现的次数.严格地按照输出样例来安排你的输出格式. ...

  10. Leetcode-求两数之和

    题目: 给定一个整数数组 nums 和一个目标值 target,请你在该数组中找出和为目标值的那 两个 整数,并返回他们的数组下标. 你可以假设每种输入只会对应一个答案.但是,你不能重复利用这个数组中 ...