【链接】https://cn.vjudge.net/problem/LightOJ-1205


【题意】


求出L..R范围内的回文个数

【题解】


数位DP;
先求出1..x里面的回文串个数.则做一下前缀和减掉就可以求出L..R之间的了
dfs(int start,int cur,bool ok,bool xiao){
其中start表示是从哪一位开始进行扫描的,这个东西用来处理前导0;
cur表示当前搜索到了第几位数字.
ok表示当前搜索到的字符串是否为回文.
xiao则表示是否出现已经搜索的某一位小于所给的数字的对应位,如果有的话,之后的每一位枚举就能一直到9了.
然后我们可以这样写记搜。
设f[i][j][k]表示从start位开始搜索,然后当前搜索到第cur位,k=0表示是回文串,k=1表示不是回文串.(当然还没搜完,只能说它可能是回文串)的回文串个数.
可以肯定,如果xiao==1了,则无论数字是什么,后面的回文串个数都是一样的了
比如
所给数字
9323
先倒过来
3239
假设我们枚举第一位为1
1xxx
则这个时候start = 4,cur = 3 (我们是倒过来的),然后因为第一位小于3,所以xiao=1
则这个时候,后面3个位置,实际上只有第2位是需要枚举的了,因为后面的两位肯定是和前面的两位一样的.
(而且每一位都可以0..9任意选)
也就是说,这个时候,答案已经和所给的数字没有任何关系了.
它是一个通式
也即这个时候往后算出来的答案f[start][cur][ok],在后序的搜索中如果遇到,是可以直接返回值的.
(注意只有在xiao==1的时候才能做记搜,因为如果xiao==0,显然之后位是有限制的,可能不是每一位都是0..9了)
}

UPD1
实际上,当ok==0的时候,直接返回0就可以了,不用再继续往下做了。
(因为再往后做ok也只会等于0)
这样f数组的第3维就可以省掉了

【错的次数】


0

【反思】


这种数位DP写成记搜比较好懂>_<

【代码】

#include <bits/stdc++.h>
using namespace std;
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define LL long long
#define rep1(i,a,b) for (int i = a;i <= b;i++)
#define rep2(i,a,b) for (int i = a;i >= b;i--)
#define mp make_pair
#define pb push_back
#define fi first
#define se second
#define ms(x,y) memset(x,y,sizeof x)
#define ri(x) scanf("%d",&x)
#define rl(x) scanf("%lld",&x)
#define rs(x) scanf("%s",x)
#define oi(x) printf("%d",x)
#define ol(x) printf("%lld",x)
#define oc putchar(' ')
#define os(x) printf(x)
#define all(x) x.begin(),x.end()
#define Open() freopen("F:\\rush.txt","r",stdin)
#define Close() ios::sync_with_stdio(0) typedef pair<int,int> pii;
typedef pair<LL,LL> pll; const int dx[9] = {0,1,-1,0,0,-1,-1,1,1};
const int dy[9] = {0,0,0,-1,1,-1,1,-1,1};
const double pi = acos(-1.0);
const int N = 100; LL a,b;
int c[N+10],temp[N+10],dp[N+10][N+10][2]; LL dfs(int start,int cur,bool ok,bool xiao){
    if (cur < 1) return ok;
    int limit = (xiao?9:c[cur]);
    if (xiao && dp[start][cur][ok]!=-1)
        return dp[start][cur][ok];
    LL ret = 0;
    rep1(i,0,limit){
        temp[cur] = i;
        if (i == 0 && start == cur){
            ret += dfs(start-1,cur-1,ok,xiao||(i < limit));
        }else
            if (ok && cur < (start+1)/2 + 1)
                ret += dfs(start,cur-1,temp[start-cur+1]==temp[cur],xiao||(i<limit));
            else
                ret += dfs(start,cur-1,ok,xiao||(i<limit));
    }
    if (xiao) dp[start][cur][ok] = ret;
    return ret;
} LL f(LL x){
    if (x < 0) return 0;
    int len = 0;
    while (x){
        c[++len] = x%10;
        x/=10;
    }
    return dfs(len,len,1,0);
} int main(){
    //Open();
    //Close();
    ms(dp,255);
    int T,kk = 0;
    ri(T);
    while (T--){
        rl(a),rl(b);
        if (a > b) swap(a,b);
        os("Case ");oi(++kk);os(": ");ol(f(b)-f(a-1));puts("");
    }
    return 0;
}

【LightOJ - 1205】Palindromic Numbers的更多相关文章

  1. LightOJ - 1205:Palindromic Numbers (数位DP&回文串)

    A palindromic number or numeral palindrome is a 'symmetrical' number like 16461 that remains the sam ...

  2. LightOJ - 1396 :Palindromic Numbers (III)(逐位确定法)

    Vinci is a little boy and is very creative. One day his teacher asked him to write all the Palindrom ...

  3. 【HDU 4722】 Good Numbers

    [题目链接] 点击打开链接 [算法] f[i][j]表示第i位,数位和对10取模余j的数的个数 状态转移,计算答案都比较简单,笔者不再赘述 [代码] #include<bits/stdc++.h ...

  4. 【Codeforces 1036C】Classy Numbers

    [链接] 我是链接,点我呀:) [题意] 让你求出只由3个非0数字组成的数字在[li,ri]这个区间里面有多少个. [题解] 只由3个非0数字组成的数字在1~10^18中只有60W个 dfs处理出来之 ...

  5. 【Codeforces 300C】Beautiful Numbers

    [链接] 我是链接,点我呀:) [题意] 让你找到长度为n的数字 这个数字只由a或者b组成 且这n个数码的和也是由a或者b组成的 求出满足这样要求的数字的个数 [题解] 枚举答案数字中b的个数为y,那 ...

  6. 【CSU 1556】Pseudoprime numbers

    题 Description Jerry is caught by Tom. He was penned up in one room with a door, which only can be op ...

  7. 【数位dp】Beautiful Numbers @2018acm上海大都会赛J

    目录 Beautiful Numbers PROBLEM 题目描述 输入描述: 输出描述: 输入 输出 MEANING SOLUTION CODE Beautiful Numbers PROBLEM ...

  8. 【UVA - 136】Ugly Numbers(set)

    Ugly Numbers Descriptions: Ugly numbers are numbers whose only prime factors are 2, 3 or 5. The sequ ...

  9. 【Aizu - ALDS1_1_C】Prime Numbers(素数筛法)

    Prime Numbers  Descriptions: A prime number is a natural number which has exactly two distinct natur ...

随机推荐

  1. pip报错

    You are using pip version 9.0.1, however version 10.0.1 is available.You should consider upgrading v ...

  2. codeforces 701 B. Cells Not Under Attack

    B. Cells Not Under Attack time limit per test 2 seconds memory limit per test 256 megabytes input st ...

  3. 打印机共享为什么老是出现“操作无法完成(错误 0X00000709)。再次检查打印机名称、并确保打印机连接网络

    这个情况应该是访问IP连接打印机才会出现的.解决办法:不使用IP访问,使用网上邻居找计算机名称再连接打印机即可. ------------------------------------------- ...

  4. PHP 使用Apache 中的ab 測试站点的压力性能

    打开Apacheserver的安装路径(我用的是 WampServer),在bin文件夹中有一个ab.exe的可运行程序,它就是要介绍的压力測试工具. watermark/2/text/aHR0cDo ...

  5. 利用gradle加入构建版本

    在java的程序中,貌似都没有这个构建版本的概念.用的诸如eclipse. idea和android studio的IDE也没有直接提供构建版本的选项.只是我却想在android程序的版本其中加入一个 ...

  6. julia/pyplot 绘图加入标签和标题

    julia 调用matplotlib.pyplot 须要先using pycall 先安装pycall Pkg.add("PyCall") 然后吧. . . 上代码把:(应该是通俗 ...

  7. 设置select组件中的默认值

    会员卡类型   <select id="name2" style="width:140px"> <option value="Ak& ...

  8. android 图片特效处理之怀旧效果

    图片特效处理系列将介绍图片的像素点的特效处理,这些物资注重的是原理.也就是说只要你知道这些算法不管是C++,VB,C#,Java都可以做出相同的特效.下面将介绍图片怀旧效果的算法.算法如下: 上面公式 ...

  9. Markdown编辑器为什么好用以及好用的markdown编辑器

    Markdown编辑器为什么好用以及好用的markdown编辑器 一.总结 一句话总结:Markdown 是一种简单的.轻量级的标记语法.用户可以使用诸如 * # 等简单的标记符号以最小的输入代价生成 ...

  10. 69.nodejs对mongodb数据库的增删改查操作

    转自:https://www.cnblogs.com/sexintercourse/p/6485381.html 首先要确保mongodb的正确安装,安装参照:http://docs.mongodb. ...