(2016北京集训十)【xsy1528】azelso - 概率期望dp

北京集训的题都是好题啊~~(于是我爆0了)
注意到一个重要的性质就是期望是线性的,也就是说每一段的期望步数可以直接加起来,那么dp求出每一段的期望就行了。。。
设$f_i$表示从$i$出发不回到$i$直接到达终点的概率,显然期望步数就是$\frac{1}{f_i}$;
考虑转移,设下一个事件概率为$p$,则
如果下一个事件是敌人:$f_i=f_{i+1}*p$
如果下一个事件是旗子:
$f_{i}=(1-p)*(1-f_{i+1})*(1+p*(1-f_{i+1})+p^{2}*(1-f_{i+1})^{2}+...)=(1-p)*\frac{1-f_{i+1}}{1-p*(1-f_{i+1})}$
第二个式子的表示的是下一次被打死并且没拿到旗子的概率;
但是还有一点小问题:$1-p*(1-f_{i+1})$可能为0
稍微变形一下:$\frac{f_{i+1}}{p}=(1-p)*f_{i+1}+p$
代码:
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<queue>
#define inf 2147483647
#define eps 1e-9
#define mod 1000000007
using namespace std;
typedef long long ll;
ll h,n,ans,p[],a,b,f[],inv[],op[];
char ord[];
ll fastpow(ll x,ll y){
int ret=;
for(;y;y>>=,x=x*x%mod){
if(y&)ret=ret*x%mod;
}
return ret;
}
int main(){
scanf("%lld%lld",&h,&n);
for(int i=;i<=n;i++){
scanf("%s",ord);
if(ord[]=='F')op[i]=;
else op[i]=;
scanf("%lld%lld%lld",&p[i],&a,&b);
inv[i]=a*fastpow(b,mod-)%mod;
}
f[n]=;
ans=h-p[n];
for(int i=n-;i>=;i--){
if(op[i+])f[i]=f[i+]*fastpow(inv[i+],mod-)%mod;
else f[i]=((mod+-inv[i+])*f[i+]%mod+inv[i+])%mod;
ans=(ans+(p[i+]-p[i]+mod)%mod*f[i]%mod)%mod;
}
printf("%lld",ans);
return ;
}
(2016北京集训十)【xsy1528】azelso - 概率期望dp的更多相关文章
- [2016北京集训测试赛5]azelso-[概率/期望dp]
Description Solution 感谢大佬的博客https://www.cnblogs.com/ywwyww/p/8511141.html 定义dp[i]为[p[i],p[i+1])的期望经过 ...
- 【XSY1528】azelso 概率&期望DP
题目大意 有一条很长很长的路(出题人的套路),你在\(0\)位置,你要去\(h\)位置. 路上有一些不同的位置上有敌人,你要和他战斗,你有\(p\)的概率赢.若你赢,则你可以走过去,否则你会死.还 ...
- (2016北京集训十四)【xsy1557】task
题解: 限制可以看成图状结构,每个任务的对物品数量的影响可以看成权值,只不过这个权值用一个五元组来表示. 那么题意要求的就是最大权闭合子图,网络流经典应用. 代码: #include<algor ...
- (2016北京集训十四)【xsy1556】股神小D - LCT
题解: 题解居然是LCT……受教了 把所有区间按照端点排序,动态维护目前有重叠的区间,用LCT维护即可. 代码: #include<algorithm> #include<iostr ...
- (2016北京集训十二)【xsy1542】疯狂求导
题解: 这题看起来很难...但是实际上并没有想象中的那么难 第一眼看上去不会求导公式怎么办?不要紧,题目背景非常良心的给出了题目中的导数计算公式 求完导合并同类项很恶心怎么办?不要紧,样例解释说明了不 ...
- (2016北京集训十)【xsy1530】小Q与内存
一道很有意思的神题~ 暴力平衡树的复杂度很对(并不),但是$2^{30}$的空间一脸屎 这题的正解是一个类似线段树的数据结构,我觉得很有创新性Orz 首先可以想到一种暴力就是用一个点代表一个区间,然后 ...
- (2016北京集训十)【xsy1529】小Q与进位制 - 分治FFT
题意很简单,就是求这个数... 其实场上我想出了分治fft的正解...然而不会打...然后打了个暴力fft挂了... 没啥好讲的,这题很恶心,卡常卡精度还爆int,要各种优化,有些dalao写的很复杂 ...
- 【BZOJ-1419】Red is good 概率期望DP
1419: Red is good Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 660 Solved: 257[Submit][Status][Di ...
- 【bzoj4832】[Lydsy2017年4月月赛]抵制克苏恩 概率期望dp
题目描述 你分别有a.b.c个血量为1.2.3的奴隶主,假设英雄血量无限,问:如果对面下出一个K点攻击力的克苏恩,你的英雄期望会受到到多少伤害. 输入 输入包含多局游戏. 第一行包含一个整数 T (T ...
随机推荐
- HDU 2199 Can you solve this equation?【二分查找】
解题思路:给出一个方程 8*x^4 + 7*x^3 + 2*x^2 + 3*x + 6 == Y,求方程的解. 首先判断方程是否有解,因为该函数在实数范围内是连续的,所以只需使y的值满足f(0)< ...
- 02《UML大战需求分析》阅读笔记之二
UML虽然是一种新的工具,但同时也代表了一种新的先进的思考方法,所以学习UML的关键不在于学习语法,而是要改变思维习惯.所以我觉得我还需要系统地培养几方面的能力,如书面表达能力,归纳总结能力,“面向对 ...
- JAVA 静态内部类--转自http://bbs.csdn.net/topics/350021609
内部类其实并不是非要声明成static的..主要还是要看实际情况决定..静态和非静态有不同的作用.. 引用一篇文章给楼主参考下吧. 在一个类中创建另外一个类,叫做成员内部类.这个成员内部类可以静态的( ...
- Unity设置Turorials-Wide布局
在bilibili上看关于UGUI官翻视频时,很喜欢对方的布局,自己照着改了下,改的步骤如下: 1, 先选用 2by3 布局 2, 把Project面板拖到Hierarchy下边 3, 把2列布局改成 ...
- day15 函数对象以及作用域
目录 函数对象 函数对象的四大功能 函数的嵌套 名称空间和作用域 名称空间 考试必考 作用域 global nonlacal LEGB原则 函数对象 ==Python中一切皆对象== 函数名也可以看成 ...
- 使用Eclipse将项目上传至远程GitLab
一.先将项目提交至本地仓库 1. 右击项目——Team——Share Project… 2.在弹出框中,选择Git——Next 3.在弹出框中进行如下步骤操作 4.至此,我们已经成功创建了本地GIT ...
- [USACO18FEB] Snow Boots G (离线+并查集)
题目大意:略 网上各种神仙做法,本蒟蒻只想了一个离线+并查集的做法 对所有靴子按最大能踩的深度从大到小排序,再把所有地砖按照积雪深度从大到小排序 一个小贪心思想,我们肯定是在 连续不能踩的地砖之前 的 ...
- ELK搭建和部署-----(上半部分)
本实验基于centos7安装部署操作步骤如下: 1.首先准备两台centos7系统,IP地址自行定义. 2.先在服务器上安装时间同步中间件为chronyc 3.并启动命令为systemctl star ...
- 启用Maven的代理访问
1. Maven配置文件 找到文件 {M2_HOME}/conf/settings.xml, 并把你的代理服务器信息配置写入.注:{M2_HOME} => D:\software\yiibai. ...
- oracle数据库安装教程以及问题和解决方法
一,oracle数据库的下载和安装 1,在oracle官网上下载oracle安装包,运行setup.exe. 2,点击取消“我希望同构My Oracle Support接受安全更新”,以防后患. 3, ...