Python之路,Day18 - Django适当进阶篇

本节内容

学员管理系统练习

Django ORM操作进阶

用户认证

Django练习小项目:学员管理系统设计开发

带着项目需求学习是最有趣和效率最高的,今天就来基于下面的需求来继续学习Django

项目需求:

1.分讲师\学员\课程顾问角色,
2.学员可以属于多个班级,学员成绩按课程分别统计
3.每个班级至少包含一个或多个讲师
4.一个学员要有状态转化的过程 ,比如未报名前,报名后,毕业老学员
5.客户要有咨询纪录, 后续的定期跟踪纪录也要保存
6.每个学员的所有上课出勤情况\学习成绩都要保存
7.学校可以有分校区,默认每个校区的员工只能查看和管理自己校区的学员
8.客户咨询要区分来源
#_*_coding:utf-8_*_
from django.db import models # Create your models here.
from django.core.exceptions import ValidationError from django.db import models
from django.contrib.auth.models import User class_type_choices= (('online',u'网络班'),
('offline_weekend',u'面授班(周末)',),
('offline_fulltime',u'面授班(脱产)',),
)
class UserProfile(models.Model):
user = models.OneToOneField(User)
name = models.CharField(u"姓名",max_length=32)
def __unicode__(self):
return self.name class School(models.Model):
name = models.CharField(u"校区名称",max_length=64,unique=True)
addr = models.CharField(u"地址",max_length=128)
staffs = models.ManyToManyField('UserProfile',blank=True)
def __unicode__(self):
return self.name class Course(models.Model):
name = models.CharField(u"课程名称",max_length=128,unique=True)
price = models.IntegerField(u"面授价格")
online_price = models.IntegerField(u"网络班价格")
brief = models.TextField(u"课程简介")
def __unicode__(self):
return self.name class ClassList(models.Model):
course = models.ForeignKey('Course')
course_type = models.CharField(u"课程类型",choices=class_type_choices,max_length=32)
semester = models.IntegerField(u"学期")
start_date = models.DateField(u"开班日期")
graduate_date = models.DateField(u"结业日期",blank=True,null=True)
teachers = models.ManyToManyField(UserProfile,verbose_name=u"讲师") #def __unicode__(self):
# return "%s(%s)" %(self.course.name,self.course_type) class Meta:
verbose_name = u'班级列表'
verbose_name_plural = u"班级列表"
unique_together = ("course","course_type","semester") class Customer(models.Model):
qq = models.CharField(u"QQ号",max_length=64,unique=True)
name = models.CharField(u"姓名",max_length=32,blank=True,null=True)
phone = models.BigIntegerField(u'手机号',blank=True,null=True)
stu_id = models.CharField(u"学号",blank=True,null=True,max_length=64)
#id = models.CharField(u"身份证号",blank=True,null=True,max_length=128)
source_type = (('qq',u"qq群"),
('referral',u"内部转介绍"),
('51cto',u"51cto"),
('agent',u"招生代理"),
('others',u"其它"),
)
source = models.CharField(u'客户来源',max_length=64, choices=source_type,default='qq')
referral_from = models.ForeignKey('self',verbose_name=u"转介绍自学员",help_text=u"若此客户是转介绍自内部学员,请在此处选择内部学员姓名",blank=True,null=True,related_name="internal_referral") course = models.ForeignKey(Course,verbose_name=u"咨询课程")
class_type = models.CharField(u"班级类型",max_length=64,choices=class_type_choices)
customer_note = models.TextField(u"客户咨询内容详情",help_text=u"客户咨询的大概情况,客户个人信息备注等...")
status_choices = (('signed',u"已报名"),
('unregistered',u"未报名"),
('graduated',u"已毕业"),
) status = models.CharField(u"状态",choices=status_choices,max_length=64,default=u"unregistered",help_text=u"选择客户此时的状态")
consultant = models.ForeignKey(UserProfile,verbose_name=u"课程顾问")
date = models.DateField(u"咨询日期",auto_now_add=True) class_list = models.ManyToManyField('ClassList',verbose_name=u"已报班级",blank=True) def __unicode__(self):
return "%s,%s" %(self.qq,self.name ) class ConsultRecord(models.Model):
customer = models.ForeignKey(Customer,verbose_name=u"所咨询客户")
note = models.TextField(u"跟进内容...")
status_choices = ((1,u"近期无报名计划"),
(2,u"2个月内报名"),
(3,u"1个月内报名"),
(4,u"2周内报名"),
(5,u"1周内报名"),
(6,u"2天内报名"),
(7,u"已报名"),
)
status = models.IntegerField(u"状态",choices=status_choices,help_text=u"选择客户此时的状态") consultant = models.ForeignKey(UserProfile,verbose_name=u"跟踪人")
date = models.DateField(u"跟进日期",auto_now_add=True) def __unicode__(self):
return u"%s, %s" %(self.customer,self.status) class Meta:
verbose_name = u'客户咨询跟进记录'
verbose_name_plural = u"客户咨询跟进记录" class CourseRecord(models.Model):
course = models.ForeignKey(ClassList,verbose_name=u"班级(课程)")
day_num = models.IntegerField(u"节次",help_text=u"此处填写第几节课或第几天课程...,必须为数字")
date = models.DateField(auto_now_add=True,verbose_name=u"上课日期")
teacher = models.ForeignKey(UserProfile,verbose_name=u"讲师")
def __unicode__(self):
return u"%s 第%s天" %(self.course,self.day_num)
class Meta:
verbose_name = u'上课纪录'
verbose_name_plural = u"上课纪录"
unique_together = ('course','day_num') class StudyRecord(models.Model):
course_record = models.ForeignKey(CourseRecord, verbose_name=u"第几天课程")
student = models.ForeignKey(Customer,verbose_name=u"学员")
record_choices = (('checked', u"已签到"),
('late',u"迟到"),
('noshow',u"缺勤"),
('leave_early',u"早退"),
)
record = models.CharField(u"上课纪录",choices=record_choices,default="checked",max_length=64)
score_choices = ((100, 'A+'),
(90,'A'),
(85,'B+'),
(80,'B'),
(70,'B-'),
(60,'C+'),
(50,'C'),
(40,'C-'),
(0,'D'),
(-1,'N/A'),
(-100,'COPY'),
(-1000,'FAIL'),
)
score = models.IntegerField(u"本节成绩",choices=score_choices,default=-1)
date = models.DateTimeField(auto_now_add=True)
note = models.CharField(u"备注",max_length=255,blank=True,null=True) def __unicode__(self):
return u"%s,学员:%s,纪录:%s, 成绩:%s" %(self.course_record,self.student.name,self.record,self.get_score_display()) class Meta:
verbose_name = u'学员学习纪录'
verbose_name_plural = u"学员学习纪录"
unique_together = ('course_record','student') 学员管理系统表结构

学员管理系统表结构

常用ORM操作

from django.db import models

class Blog(models.Model):
name = models.CharField(max_length=100)
tagline = models.TextField() def __str__(self): # __unicode__ on Python 2
return self.name class Author(models.Model):
name = models.CharField(max_length=50)
email = models.EmailField() def __str__(self): # __unicode__ on Python 2
return self.name class Entry(models.Model):
blog = models.ForeignKey(Blog)
headline = models.CharField(max_length=255)
body_text = models.TextField()
pub_date = models.DateField()
mod_date = models.DateField()
authors = models.ManyToManyField(Author)
n_comments = models.IntegerField()
n_pingbacks = models.IntegerField()
rating = models.IntegerField() def __str__(self): # __unicode__ on Python 2
return self.headline 示例models

示例models

创建

>>> from blog.models import Blog
>>> b = Blog(name='Beatles Blog', tagline='All the latest Beatles news.')
>>> b.save()

This performs an INSERT SQL statement behind the scenes. Django doesn’t hit the database until you explicitly call save().

The save() method has no return value.

处理带外键关联或多对多关联的对象

ForeignKey的关联

>>> from blog.models import Entry
>>> entry = Entry.objects.get(pk=1)
>>> cheese_blog = Blog.objects.get(name="Cheddar Talk")
>>> entry.blog = cheese_blog
>>> entry.save()

ManyToManyField关联 

>>> from blog.models import Author
>>> joe = Author.objects.create(name="Joe")
>>> entry.authors.add(joe)

添加多个ManyToMany对象

>>> john = Author.objects.create(name="John")
>>> paul = Author.objects.create(name="Paul")
>>> george = Author.objects.create(name="George")
>>> ringo = Author.objects.create(name="Ringo")
>>> entry.authors.add(john, paul, george, ringo)

查询

all_entries = Entry.objects.all() #查询所有
Entry.objects.filter(pub_date__year=2006) #查询所有pub_date为2006年的纪录
Entry.objects.all().filter(pub_date__year=2006) #与上面那句一样
>>> Entry.objects.filter( #链式查询
... headline__startswith='What'
... ).exclude(
... pub_date__gte=datetime.date.today()
... ).filter(
... pub_date__gte=datetime(2005, 1, 30)
... ) one_entry = Entry.objects.get(pk=1) #单条查询 Entry.objects.all()[:5] #查询前5条
Entry.objects.all()[5:10] #你猜 Entry.objects.order_by('headline')[0] #按headline排序取第一条 Entry.objects.filter(pub_date__lte='2006-01-01') #相当于sql语句SELECT * FROM blog_entry WHERE pub_date <= '2006-01-01'; Entry.objects.get(headline__exact="Cat bites dog") #相当于SELECT ... WHERE headline = 'Cat bites dog';
Blog.objects.get(name__iexact="beatles blog") #与上面相同,只是大小写不敏感 Entry.objects.get(headline__contains='Lennon') #相当 于SELECT ... WHERE headline LIKE '%Lennon%'; 单表内查询语句

单表内查询语句

#This example retrieves all Entry objects with a Blog whose name is 'Beatles Blog':
Entry.objects.filter(blog__name='Beatles Blog') Blog.objects.filter(entry__headline__contains='Lennon')

关联查询

对同一表内不同的字段进行对比查询,In the examples given so far, we have constructed filters that compare the value of a model field with a constant. But what if you want to compare the value of a model field with another field on the same model?

Django provides F expressions to allow such comparisons. Instances of F() act as a reference to a model field within a query. These references can then be used in query filters to compare the values of two different fields on the same model instance.

For example, to find a list of all blog entries that have had more comments than pingbacks, we construct an F() object to reference the pingback count, and use that F() object in the query:

>>> from django.db.models import F
>>> Entry.objects.filter(n_comments__gt=F('n_pingbacks'))

Django supports the use of addition, subtraction, multiplication, division, modulo, and power arithmetic with F() objects, both with constants and with other F() objects. To find all the blog entries with more than twice as many comments as pingbacks, we modify the query:

>>> Entry.objects.filter(n_comments__gt=F('n_pingbacks') * 2)

To find all the entries where the rating of the entry is less than the sum of the pingback count and comment count, we would issue the query:

>>> Entry.objects.filter(rating__lt=F('n_comments') + F('n_pingbacks'))

For date and date/time fields, you can add or subtract a timedelta object. The following would return all entries that were modified more than 3 days after they were published:

>>> from datetime import timedelta
>>> Entry.objects.filter(mod_date__gt=F('pub_date') + timedelta(days=3))

Caching and QuerySets

Each QuerySet contains a cache to minimize database access. Understanding how it works will allow you to write the most efficient code.

In a newly created QuerySet, the cache is empty. The first time a QuerySet is evaluated – and, hence, a database query happens – Django saves the query results in the QuerySet’s cache and returns the results that have been explicitly requested (e.g., the next element, if the QuerySet is being iterated over). Subsequent evaluations of the QuerySet reuse the cached results.

Keep this caching behavior in mind, because it may bite you if you don’t use your QuerySets correctly. For example, the following will create two QuerySets, evaluate them, and throw them away:

>>> print([e.headline for e in Entry.objects.all()])
>>> print([e.pub_date for e in Entry.objects.all()])

That means the same database query will be executed twice, effectively doubling your database load. Also, there’s a possibility the two lists may not include the same database records, because an Entry may have been added or deleted in the split second between the two requests.

To avoid this problem, simply save the QuerySet and reuse it:

>>> queryset = Entry.objects.all()
>>> print([p.headline for p in queryset]) # Evaluate the query set.
>>> print([p.pub_date for p in queryset]) # Re-use the cache from the evaluation.

When QuerySets are not cached

Querysets do not always cache their results. When evaluating only part of the queryset, the cache is checked, but if it is not populated then the items returned by the subsequent query are not cached. Specifically, this means that limiting the querysetusing an array slice or an index will not populate the cache.

For example, repeatedly getting a certain index in a queryset object will query the database each time:

>>> queryset = Entry.objects.all()
>>> print queryset[5] # Queries the database
>>> print queryset[5] # Queries the database again

However, if the entire queryset has already been evaluated, the cache will be checked instead:

>>> queryset = Entry.objects.all()
>>> [entry for entry in queryset] # Queries the database
>>> print queryset[5] # Uses cache
>>> print queryset[5] # Uses cache

Complex lookups with Q objects(复杂查询)

Keyword argument queries – in filter(), etc. – are “AND”ed together. If you need to execute more complex queries (for example, queries with OR statements), you can use Q objects.

Q object (django.db.models.Q) is an object used to encapsulate a collection of keyword arguments. These keyword arguments are specified as in “Field lookups” above.

For example, this Q object encapsulates a single LIKE query:

from django.db.models import Q
Q(question__startswith='What')

Q objects can be combined using the & and | operators. When an operator is used on two Q objects, it yields a new Q object.

For example, this statement yields a single Q object that represents the “OR” of two "question__startswith" queries:

Q(question__startswith='Who') | Q(question__startswith='What')

This is equivalent to the following SQL WHERE clause:

WHERE question LIKE 'Who%' OR question LIKE 'What%'

You can compose statements of arbitrary complexity by combining Q objects with the & and | operators and use parenthetical grouping. Also, Q objects can be negated using the ~ operator, allowing for combined lookups that combine both a normal query and a negated (NOT) query:

Q(question__startswith='Who') | ~Q(pub_date__year=2005)

Each lookup function that takes keyword-arguments (e.g. filter()exclude()get()) can also be passed one or more Qobjects as positional (not-named) arguments. If you provide multiple Q object arguments to a lookup function, the arguments will be “AND”ed together. For example:

Poll.objects.get(
Q(question__startswith='Who'),
Q(pub_date=date(2005, 5, 2)) | Q(pub_date=date(2005, 5, 6))
)

... roughly translates into the SQL:

SELECT * from polls WHERE question LIKE 'Who%'
AND (pub_date = '2005-05-02' OR pub_date = '2005-05-06')

Lookup functions can mix the use of Q objects and keyword arguments. All arguments provided to a lookup function (be they keyword arguments or Q objects) are “AND”ed together. However, if a Q object is provided, it must precede the definition of any keyword arguments. For example:

Poll.objects.get(
Q(pub_date=date(2005, 5, 2)) | Q(pub_date=date(2005, 5, 6)),
question__startswith='Who')

... would be a valid query, equivalent to the previous example; but:

# INVALID QUERY
Poll.objects.get(
question__startswith='Who',
Q(pub_date=date(2005, 5, 2)) | Q(pub_date=date(2005, 5, 6)))

... would not be valid.

更新 

Updating multiple objects at once

# Update all the headlines with pub_date in 2007.
Entry.objects.filter(pub_date__year=2007).update(headline='Everything is the same')

在原有数据的基础上批量自增

Calls to update can also use F expressions to update one field based on the value of another field in the model. This is especially useful for incrementing counters based upon their current value. For example, to increment the pingback count for every entry in the blog:

>>> Entry.objects.all().update(n_pingbacks=F('n_pingbacks') + 1)

However, unlike F() objects in filter and exclude clauses, you can’t introduce joins when you use F() objects in an update – you can only reference fields local to the model being updated. If you attempt to introduce a join with an F() object, a FieldErrorwill be raised:

# THIS WILL RAISE A FieldError
>>> Entry.objects.update(headline=F('blog__name'))

Aggregation(聚合)

from django.db import models

class Author(models.Model):
name = models.CharField(max_length=100)
age = models.IntegerField() class Publisher(models.Model):
name = models.CharField(max_length=300)
num_awards = models.IntegerField() class Book(models.Model):
name = models.CharField(max_length=300)
pages = models.IntegerField()
price = models.DecimalField(max_digits=10, decimal_places=2)
rating = models.FloatField()
authors = models.ManyToManyField(Author)
publisher = models.ForeignKey(Publisher)
pubdate = models.DateField() class Store(models.Model):
name = models.CharField(max_length=300)
books = models.ManyToManyField(Book)
registered_users = models.PositiveIntegerField() 示例models

示例models

# Total number of books.
>>> Book.objects.count() # Total number of books with publisher=BaloneyPress
>>> Book.objects.filter(publisher__name='BaloneyPress').count() # Average price across all books.
>>> from django.db.models import Avg
>>> Book.objects.all().aggregate(Avg('price'))
{'price__avg': 34.35} # Max price across all books.
>>> from django.db.models import Max
>>> Book.objects.all().aggregate(Max('price'))
{'price__max': Decimal('81.20')} # Cost per page
>>> Book.objects.all().aggregate(
... price_per_page=Sum(F('price')/F('pages'), output_field=FloatField()))
{'price_per_page': 0.4470664529184653} # All the following queries involve traversing the Book<->Publisher
# foreign key relationship backwards. # Each publisher, each with a count of books as a "num_books" attribute.
>>> from django.db.models import Count
>>> pubs = Publisher.objects.annotate(num_books=Count('book'))
>>> pubs
[<Publisher BaloneyPress>, <Publisher SalamiPress>, ...]
>>> pubs[0].num_books # The top 5 publishers, in order by number of books.
>>> pubs = Publisher.objects.annotate(num_books=Count('book')).order_by('-num_books')[:5]
>>> pubs[0].num_books 常用聚合场景需求

常用聚合场景需求

更多聚合查询例子:https://docs.djangoproject.com/en/1.9/topics/db/aggregation/

用户认证 

from django.contrib.auth import authenticate
user = authenticate(username='john', password='secret')
if user is not None:
# the password verified for the user
if user.is_active:
print("User is valid, active and authenticated")
else:
print("The password is valid, but the account has been disabled!")
else:
# the authentication system was unable to verify the username and password
print("The username and password were incorrect.")

How to log a user out

from django.contrib.auth import logout

def logout_view(request):
logout(request)
# Redirect to a success page.

Python学习路程day18的更多相关文章

  1. Python学习路程day16

    Python之路,Day14 - It's time for Django 本节内容 Django流程介绍 Django url Django view Django models Django te ...

  2. Python学习路程day8

    Socket语法及相关 socket概念 A network socket is an endpoint of a connection across a computer network. Toda ...

  3. Python学习路程day6

    shelve 模块 shelve模块是一个简单的k,v将内存数据通过文件持久化的模块,可以持久化任何pickle可支持的python数据格式 import shelve d = shelve.open ...

  4. python 学习路程(一)

    好早之前就一直想学python,可是一直没有系统的学习过,给自己立个flag,从今天开始一步步掌握python的用法: python是一种脚本形式的语言,据说是面向废程序员学习开发使用的,我觉得很适合 ...

  5. Python学习路程-常用设计模式学习

    本节内容 设计模式介绍 设计模式分类 设计模式6大原则 1.设计模式介绍 设计模式(Design Patterns) ——可复用面向对象软件的基础 设计模式(Design pattern)是一套被反复 ...

  6. Python学习路程day19

    Python之路,Day19 - Django 进阶   本节内容 自定义template tags 中间件 CRSF 权限管理 分页 Django分页 https://docs.djangoproj ...

  7. Python学习路程day15

    Python之路[第十五篇]:Web框架 Web框架本质 众所周知,对于所有的Web应用,本质上其实就是一个socket服务端,用户的浏览器其实就是一个socket客户端. #!/usr/bin/en ...

  8. Python学习路程day17

    常用算法与设计模式 选择排序 时间复杂度 二.计算方法 1.一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道.但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费 ...

  9. Python学习路程day12

    前端内容学习:HTML和CSS <!DOCTYPE html> <html lang="en"> <head> <meta http-eq ...

随机推荐

  1. poll()函数的使用

    分类: LINUX poll函数用于监测多个等待事件,若事件未发生,进程睡眠,放弃CPU控制权,若监测的任何一个事件发生,poll将唤醒睡眠的进程,并判断是什么等待事件发生,执行相应的操作.poll函 ...

  2. Elasticsearch5.0.1 + Kibana5.0.1 + IK 5.0.1安装记录

    最近工作需要,开始研究ES,当前ES的最新版本为5.0.1,从之前的2.x的版本号一下升级到5.x,主要是之前Elastic的产品版本号因为收购等原因很乱,ES 2.X版本的和Kibana 4.x版本 ...

  3. jquery mobile 实现自定义confirm确认框效果

    类似删除的效果,在执行之前,一般需要添加确认对话框,点确认的话执行,取消按钮就不执行,传统的js if(confirm('确定删除吗?')) { //执行代码 } 这种效果比较丑,使用jquery m ...

  4. SpringMVC流程

    Spring工作流程描述 1. 用户向服务器发送请求,请求被Spring 前端控制Servelt DispatcherServlet捕获: 2. DispatcherServlet对请求URL进行解析 ...

  5. 虚拟机启动linux系统报错,此主机支持 Intel VT-x,但 Intel VT-x 处于禁用状态

    在使用虚拟机启动linux的时候报错,如下: 已将该虚拟机配置为使用 64 位客户机操作系统.但是,无法执行 64 位操作. 此主机支持 Intel VT-x,但 Intel VT-x 处于禁用状态. ...

  6. [转] c# 模拟Asp.net页面中的某个按钮的点击,向web服务器发出请求

    在没有做题目中所述的内容的时候,感觉这应该是很简单的东西,但是当真正开始做的时候却发现,有很多问题现在在这里写出来,供和我一样水平不高的参考一下. 在写本文之前参照了一下文章 欢迎使用CSDN论坛阅读 ...

  7. 对git的认识

    对git这个词我听过但不了解,更谈不了认识.只能咨询百度了. Git是一个开源的分布式版本控制系统,用以有效.高速的处理从很小到非常大的项目版本管理. Git 是 Linus Torvalds 为了帮 ...

  8. hibernate入门实例

    1. 环境配置 1.1 hiberante环境配置 hibernate可实现面向对象的数据存储.hibernate的官网:http://hibernate.org/ 官网上选择hibernate OR ...

  9. openssl

    openssl genrsa -des3 -out server.key 1024openssl req -new server.key -out servr.csr seserver-fnamese ...

  10. Codeforces Round #211 (Div. 2) D题(二分,贪心)解题报告

    ---恢复内容开始--- 题目地址 简要题意: n个小伙子一起去买自行车,他们有每个人都带了一些钱,并且有公有的一笔梦想启动资金,可以分配给任何小伙子任何数值,当然分配权在我们的手中.现在给出m辆自行 ...