Hadoop示例程序WordCount详解及实例(转)
1.图解MapReduce
2.简历过程:
Input:
Hello World Bye World
Hello Hadoop Bye Hadoop
Bye Hadoop Hello Hadoop
Map:
<Hello,1>
<World,1>
<Bye,1>
<World,1>
<Hello,1>
<Hadoop,1>
<Bye,1>
<Hadoop,1>
<Bye,1>
<Hadoop,1>
<Hello,1>
<Hadoop,1>
Sort:
<Bye,1>
<Bye,1>
<Bye,1>
<Hadoop,1>
<Hadoop,1>
<Hadoop,1>
<Hadoop,1>
<Hello,1>
<Hello,1>
<Hello,1>
<World,1>
<World,1>
Combine:
<Bye,1,1,1>
<Hadoop,1,1,1,1>
<Hello,1,1,1>
<World,1,1>
Reduce:
<Bye,3>
<Hadoop,4>
<Hello,3>
<World,2>
3.代码实例:
- package com.felix;
- import java.io.IOException;
- import java.util.Iterator;
- import java.util.StringTokenizer;
- import org.apache.hadoop.fs.Path;
- import org.apache.hadoop.io.IntWritable;
- import org.apache.hadoop.io.LongWritable;
- import org.apache.hadoop.io.Text;
- import org.apache.hadoop.mapred.FileInputFormat;
- import org.apache.hadoop.mapred.FileOutputFormat;
- import org.apache.hadoop.mapred.JobClient;
- import org.apache.hadoop.mapred.JobConf;
- import org.apache.hadoop.mapred.MapReduceBase;
- import org.apache.hadoop.mapred.Mapper;
- import org.apache.hadoop.mapred.OutputCollector;
- import org.apache.hadoop.mapred.Reducer;
- import org.apache.hadoop.mapred.Reporter;
- import org.apache.hadoop.mapred.TextInputFormat;
- import org.apache.hadoop.mapred.TextOutputFormat;
- /**
- *
- * 描述:WordCount explains by Felix
- * @author Hadoop Dev Group
- */
- public class WordCount
- {
- /**
- * MapReduceBase类:实现了Mapper和Reducer接口的基类(其中的方法只是实现接口,而未作任何事情)
- * Mapper接口:
- * WritableComparable接口:实现WritableComparable的类可以相互比较。所有被用作key的类应该实现此接口。
- * Reporter 则可用于报告整个应用的运行进度,本例中未使用。
- *
- */
- public static class Map extends MapReduceBase implements
- Mapper<LongWritable, Text, Text, IntWritable>
- {
- /**
- * LongWritable, IntWritable, Text 均是 Hadoop 中实现的用于封装 Java 数据类型的类,这些类实现了WritableComparable接口,
- * 都能够被串行化从而便于在分布式环境中进行数据交换,你可以将它们分别视为long,int,String 的替代品。
- */
- private final static IntWritable one = new IntWritable(1);
- private Text word = new Text();
- /**
- * Mapper接口中的map方法:
- * void map(K1 key, V1 value, OutputCollector<K2,V2> output, Reporter reporter)
- * 映射一个单个的输入k/v对到一个中间的k/v对
- * 输出对不需要和输入对是相同的类型,输入对可以映射到0个或多个输出对。
- * OutputCollector接口:收集Mapper和Reducer输出的<k,v>对。
- * OutputCollector接口的collect(k, v)方法:增加一个(k,v)对到output
- */
- public void map(LongWritable key, Text value,
- OutputCollector<Text, IntWritable> output, Reporter reporter)
- throws IOException
- {
- String line = value.toString();
- StringTokenizer tokenizer = new StringTokenizer(line);
- while (tokenizer.hasMoreTokens())
- {
- word.set(tokenizer.nextToken());
- output.collect(word, one);
- }
- }
- }
- public static class Reduce extends MapReduceBase implements
- Reducer<Text, IntWritable, Text, IntWritable>
- {
- public void reduce(Text key, Iterator<IntWritable> values,
- OutputCollector<Text, IntWritable> output, Reporter reporter)
- throws IOException
- {
- int sum = 0;
- while (values.hasNext())
- {
- sum += values.next().get();
- }
- output.collect(key, new IntWritable(sum));
- }
- }
- public static void main(String[] args) throws Exception
- {
- /**
- * JobConf:map/reduce的job配置类,向hadoop框架描述map-reduce执行的工作
- * 构造方法:JobConf()、JobConf(Class exampleClass)、JobConf(Configuration conf)等
- */
- JobConf conf = new JobConf(WordCount.class);
- conf.setJobName("wordcount"); //设置一个用户定义的job名称
- conf.setOutputKeyClass(Text.class); //为job的输出数据设置Key类
- conf.setOutputValueClass(IntWritable.class); //为job输出设置value类
- conf.setMapperClass(Map.class); //为job设置Mapper类
- conf.setCombinerClass(Reduce.class); //为job设置Combiner类
- conf.setReducerClass(Reduce.class); //为job设置Reduce类
- conf.setInputFormat(TextInputFormat.class); //为map-reduce任务设置InputFormat实现类
- conf.setOutputFormat(TextOutputFormat.class); //为map-reduce任务设置OutputFormat实现类
- /**
- * InputFormat描述map-reduce中对job的输入定义
- * setInputPaths():为map-reduce job设置路径数组作为输入列表
- * setInputPath():为map-reduce job设置路径数组作为输出列表
- */
- FileInputFormat.setInputPaths(conf, new Path(args[0]));
- FileOutputFormat.setOutputPath(conf, new Path(args[1]));
- JobClient.runJob(conf); //运行一个job
- }
- }
Hadoop示例程序WordCount详解及实例(转)的更多相关文章
- (转载)Hadoop示例程序WordCount详解
最近在学习云计算,研究Haddop框架,费了一整天时间将Hadoop在Linux下完全运行起来,看到官方的map-reduce的demo程序WordCount,仔细研究了一下,算做入门了. 其实Wor ...
- JStorm第一个程序WordCount详解
一.Strom基本知识(回顾) 1,首先明确Storm各个组件的作用,包括Nimbus,Supervisor,Spout,Bolt,Task,Worker,Tuple nimbus是整个storm任务 ...
- Hadoop示例程序WordCount编译运行
首先确保Hadoop已正确安装及运行. 将WordCount.java拷贝出来 $ cp ./src/examples/org/apache/hadoop/examples/WordCount.jav ...
- hadoop集群配置方法---mapreduce应用:xml解析+wordcount详解---yarn配置项解析
注:以下链接均为近期hadoop集群搭建及mapreduce应用开发查找到的资料.使用hadoop2.6.0,其中hadoop集群配置过程下面的文章都有部分参考. hadoop集群配置方法: ---- ...
- hadoop应用开发技术详解
<大 数据技术丛书:Hadoop应用开发技术详解>共12章.第1-2章详细地介绍了Hadoop的生态系统.关键技术以及安装和配置:第3章是 MapReduce的使用入门,让读者了解整个开发 ...
- 《Hadoop应用开发技术详解》
<Hadoop应用开发技术详解> 基本信息 作者: 刘刚 丛书名: 大数据技术丛书 出版社:机械工业出版社 ISBN:9787111452447 上架时间:2014-1-10 出版日期:2 ...
- Protocol Buffer技术详解(Java实例)
Protocol Buffer技术详解(Java实例) 该篇Blog和上一篇(C++实例)基本相同,只是面向于我们团队中的Java工程师,毕竟我们项目的前端部分是基于Android开发的,而且我们研发 ...
- Hadoop Hive sql语法详解
Hadoop Hive sql语法详解 Hive 是基于Hadoop 构建的一套数据仓库分析系统,它提供了丰富的SQL查询方式来分析存储在Hadoop 分布式文件系统中的数据,可以将结构 化的数据文件 ...
- Protocol Buffer技术详解(C++实例)
Protocol Buffer技术详解(C++实例) 这篇Blog仍然是以Google的官方文档为主线,代码实例则完全取自于我们正在开发的一个Demo项目,通过前一段时间的尝试,感觉这种结合的方式比较 ...
随机推荐
- JAVA 1.8 理解面向对象程序设计
1. break语句:经常用在循环语句中,用于跳出整个循环,执行循环后面的代码. 2. continue语句:经常用在循环语句中,用于跳出当前的这个循环(或者是跳出本次循环),开始下一次循环的执行. ...
- An entity object cannot be referenced by multiple instances of IEntityChangeTracker.
如果你和我一样遇到了这个问题,那么你就要检查你要操作的Model对象查询,更新操作的数据库上下文也就是DBContext是否一致.如果不一致也就是说你用AContext去查如AContext.SET& ...
- 大数据运算模型 MapReduce 原理
大数据运算模型 MapReduce 原理 2016-01-24 杜亦舒 MapReduce 是一个大数据集合的并行运算模型,由google提出,现在流行的hadoop中也使用了MapReduce作为计 ...
- cmd命令行提示符
cd..用来返回上层到目录 cd download(某一具体文件夹)进入此文件夹中的一个文件夹 进入命令行时直接输入D: 进入D盘 dir 显示文件目录
- checkbox属性checked="checked"已有,但却不显示打勾的解决办法
2014-02-05 BIWEB开发技巧 9919 在做权限管理的时候,做了一个功能,就是当勾选栏目,把所有的权限全勾上.刚开始使用了如下代码: function check(id,check) { ...
- python迭代器
首先解释以下迭代器跟可迭代对象(Iterable)的区别,可以直接作用于for循环或者实现了__iter__的对象统称为可迭代对象(Iterable).可以被next()函数调用并不断返回下一个值的对 ...
- 强大的打印功能jatoolsPrinter使用总结
最近功能做项目,需要实现打印条码标签的功能,对于第一次接触打印机的小白来说简直是折磨死我拉,公司采购的打印机是斑马的GK888T,其实,如果单纯的想实现能打印出来标签的话,直接用window.prin ...
- Java数组扩容算法及Java对它的应用
1)Java数组对象的大小是固定不变的,数组对象是不可扩容的.利用数组复制方法可以变通的实现数组扩容.System.arraycopy()可以复制数组.Arrays.copyOf()可以简便的创建数组 ...
- mac OS.NE开发环境搭建
合肥程序员群:49313181. 合肥实名程序员群:128131462 (不愿透露姓名和信息者勿加入,申请备注填写姓名+技术+工作年限) Q Q:408365330 E-Mail:eg ...
- JavaScript模块化
1.commonjs 导入: var math = require('math'); math.add(2,3); // 5 导出: module.exports={} 应用会停止并等待加载 2.AM ...