Description

  L公司有N个工厂,由高到底分布在一座山上。如图所示,工厂1在山顶,工厂N在山脚。由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用。突然有一天,L公司的总裁L先生接到气象部门的电话,被告知三天之后将有一场暴雨,于是L先生决定紧急在某些工厂建立一些仓库以免产品被淋坏。由于地形的不同,在不同工厂建立仓库的费用可能是不同的。第i个工厂目前已有成品Pi件,在第i个工厂位置建立仓库的费用是Ci。对于没有建立仓库的工厂,其产品应被运往其他的仓库进行储藏,而由于L公司产品的对外销售处设置在山脚的工厂N,故产品只能往山下运(即只能运往编号更大的工厂的仓库),当然运送产品也是需要费用的,假设一件产品运送1个单位距离的费用是1。假设建立的仓库容量都都是足够大的,可以容下所有的产品。你将得到以下数据:1:工厂i距离工厂1的距离Xi(其中X1=0);2:工厂i目前已有成品数量Pi;:3:在工厂i建立仓库的费用Ci;请你帮助L公司寻找一个仓库建设的方案,使得总的费用(建造费用+运输费用)最小。

Input

  第一行包含一个整数N,表示工厂的个数。接下来N行每行包含两个整数Xi, Pi, Ci, 意义如题中所述。

Output

  仅包含一个整数,为可以找到最优方案的费用。

Sample Input

3
0 5 10
5 3 100
9 6 10

Sample Output

32

HINT

  在工厂1和工厂3建立仓库,建立费用为10+10=20,运输费用为(9-5)*3 = 12,总费用32。如果仅在工厂3建立仓库,建立费用为10,运输费用为(9-0)*5+(9-5)*3=57,总费用67,不如前者优。
  【数据规模】
  对于100%的数据, N ≤1000000。 所有的Xi, Pi, Ci均在32位带符号整数以内,保证中间计算结果不超过64位带符号整数。 

Source

Solution

  设$f[i]$表示在第$i$个工厂建仓库时前$i$个工厂的最小花费,则:

  $\displaystyle f[i]=min\left\{f[j]+\sum_{k=j+1}^{i}(c[i]-c[k])*p[k]\right\}+c[i]$

    $\displaystyle=min\left\{f[j]+c[i]*\sum_{k=j+1}^{i}p[k]-\sum_{k=j+1}^{i}c[k]*p[k]\right\}+c[i]$

  令$\displaystyle sump[i]=\sum_{j=1}^i p[j]$,$\displaystyle sumxp[i]=\sum_{j=1}^i x[j]*p[j]$,则:

  $\displaystyle f[i]=min\big\{\ f[j]+x[i]*(sump[i]-sump[j])-(sumxp[i]-sumxp[j])\ \big\}+c[i]$

  据说$f[i]$满足决策单调性,辣么这一步的证明跳过= =b

  设$j<k$且$k$比$j$优,那么最后化成的斜率式是这样的:$\displaystyle\frac{(f[k]+sumxp[k])-(f[j]+sumxp[j])}{sump[k]-sump[j]}<c[i]$

  维护下凸壳搞一搞就行了

 #include <bits/stdc++.h>
using namespace std;
typedef long long ll;
int x[], p[], c[], q[];
ll sump[], sumxp[], f[]; double slope(int i)
{
return 1.0 * (f[q[i]] + sumxp[q[i]] - f[q[i - ]] - sumxp[q[i - ]]) / (sump[q[i]] - sump[q[i - ]]);
} int main()
{
int n, front = , back = ;
scanf("%d", &n);
for(int i = ; i <= n; ++i)
{
scanf("%d%d%d", x + i, p + i, c + i);
sump[i] = sump[i - ] + p[i];
sumxp[i] = sumxp[i - ] + (ll)x[i] * p[i];
}
for(int i = ; i <= n; ++i)
{
while(front < back - && slope(front + ) < x[i])
++front;
int j = q[front + ];
f[i] = f[j] + x[i] * (sump[i] - sump[j]) - sumxp[i] + sumxp[j] + c[i];
q[++back] = i;
while(front < back - && slope(back) < slope(back - ))
q[--back] = i;
}
printf("%lld\n", f[n]);
return ;
}

[BZOJ1096] [ZJOI2007] 仓库建设 (斜率优化)的更多相关文章

  1. bzoj1096[ZJOI2007]仓库建设 斜率优化dp

    1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 5482  Solved: 2448[Submit][Stat ...

  2. BZOJ1096 [ZJOI2007]仓库建设——斜率优化

    方程: $\Large f(i)=min(f(j)+\sum\limits_{k=j+1}^{i}(x_i-x_k)*p_k)+c_i$ 显然这样的方程复杂度为$O(n^3)$极限爆炸,所以我们要换一 ...

  3. 【BZOJ1096】[ZJOI2007]仓库建设 斜率优化

    [BZOJ1096][ZJOI2007]仓库建设 Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L公司 ...

  4. bzoj-1096 1096: [ZJOI2007]仓库建设(斜率优化dp)

    题目链接: 1096: [ZJOI2007]仓库建设 Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L ...

  5. BZOJ 1096: [ZJOI2007]仓库建设 [斜率优化DP]

    1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4201  Solved: 1851[Submit][Stat ...

  6. 【BZOJ-1096】仓库建设 斜率优化DP

    1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3719  Solved: 1633[Submit][Stat ...

  7. 【bzoj1096】[ZJOI2007]仓库建设 斜率优化dp

    题目描述 L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用.突然有一天,L公司的总裁L ...

  8. P2120 [ZJOI2007]仓库建设 斜率优化dp

    好题,这题是我理解的第一道斜率优化dp,自然要写一发题解.首先我们要写出普通的表达式,然后先用前缀和优化.然后呢?我们观察发现,x[i]是递增,而我们发现的斜率也是需要是递增的,然后就维护一个单调递增 ...

  9. 洛谷P2120 [ZJOI2007]仓库建设 斜率优化DP

    做的第一道斜率优化\(DP\)QwQ 原题链接1/原题链接2 首先考虑\(O(n^2)\)的做法:设\(f[i]\)表示在\(i\)处建仓库的最小费用,则有转移方程: \(f[i]=min\{f[j] ...

随机推荐

  1. LNMP搭建04 -- 配置Nginx支持PHP

    首先建立存放网页文件的目录,执行 mkdri /usr/local/server/www  然后进入到该目录中 cd /usr/local/server/www 然后创建一个测试文件: phpinfo ...

  2. 使用IPTABLES限制IP上传下载速度,如何用iptables限速?

    怎样使用IPTABLES限制IP上传下载速度,如何用iptables限速?我们先来看范例: iptables限制某IP的上传速度为1000KB/秒(8Mbps,流入服务器带宽),即在此IP所在的服务器 ...

  3. ASP.NET Core的身份认证框架IdentityServer4--(3)令牌服务配置访问控制跟UI添加

    使用密码保护API OAuth 2.0 资源所有者密码授权允许一个客户端发送用户名和密码到IdentityServer并获得一个表示该用户的可以用于访问api的Token. 该规范建议仅对" ...

  4. [翻译] 编写高性能 .NET 代码--第二章 GC -- 配置选项

    配置选项 在基于"less rope to hang yourself with"思想下,.NET 框架没有给开发提供很多太多的配置选项.但在大多数情况下,GC会跟你的硬件配置,及 ...

  5. Log4j2配置文件详解

    目录[-] 1 系列目录 2 默认配置 3 第一个配置例子 4 复杂一点的配置 4.1 Appender之Syslog配置 4.2 Syslog及Syslog-ng相关配置(Fedora) 5 Log ...

  6. TP5整合 WorkerMan 以及 GatewayWorker

    TP5整合GatewayWorker Windows版安装 a)使用composer create-project topthink/think testTG,来安装thinkphp5. b)进入t ...

  7. MySQL之表的数据类型

    一 介绍 存储引擎决定了表的类型,而表内存放的数据也要有不同的类型,每种数据类型都有自己的宽度,但宽度是可选的 详细参考: http://www.runoob.com/mysql/mysql-data ...

  8. css线性渐变兼容

    css线性渐变兼容 background: linear-gradient(top, rgba(54, 77, 127, 0.8), rgba(54, 77, 127, 0.8)); backgrou ...

  9. Apache+PHP+Mysql中文配置

    一.安装Apache2 1.输入sudo apt-get install apache2下载安装apache2 2.输入Y回车确认 3.安装成功 Apache安装完成后,默认的网站根目录是" ...

  10. PHP开发丨3个简单的方法处理emoji表情

    一般Mysql表设计时,都是用UTF8字符集的.把带有emoji的昵称字段往里面insert一下就没了,整个字段变成了空字符串.这是怎么回事呢?原来是因为Mysql的utf8字符集是3字节的,而emo ...