题链:

http://www.joyoi.cn/problem/tyvj-1933
题解:

期望dp,拓扑序
定义dp[i]表示从i点到N点的期望距离。
令cnt[u]表示u的出度。
显然$$dp[u]=\sum_{u->v}(dp[v]+e(边权))* \frac{1}{cnt[u]}$$
由于是个DAG,所以拓扑排序后,从后向前dp即可。


题外话:为何不能正向dp:(希望聪明可爱的泥萌能看懂接下来的分析)

好吧,其实正向dp是可以的,但是没有反向dp来的直接和简单。
我们来看看弱弱的我当初觉得应该怎样去正向dp:
定义dp[i]表示从1点到i点的期望距离。
那么我们仿照之前反向dp的思路,我们找到当前v点的来源点u,
显然dp[v]肯定和dp[u]以及u的信息有关。
那u对v的贡献是不是就直接是$$dp[v]+=\frac{dp[u]+e(边权)}{cnt[u]}$$
即我们希望上式得到:
1到v的期望距离dp[v] = (1到u的期望距离 + u到v的边权)*(u到v的概率) [u为所有能到v的点]
为检验是否正确,我就试了几个小例子:

1.一个点没有边,答案为0,正确诶!(...)

2.两个点,一条边:1→ 2:3(箭头两头为边的起点和终点,3为边权),答案为3,又正确了!(废话)

3.三个点,3条边:1→ 2:1,1→ 3:3,2→ 3:2,用脚趾头也算得出来答案为3,可是程序喜闻乐见地输出了一个4。

???怎么回事,dp哪里出现的问题?

经过一番分析,我找到了问题的根源,就处在dp转移时加的边权e那里。


在详细说明问题之前,我们先来看看通常倒着做的期望dp里面的各个状态的期望是如何实现递推的,
即一个状态j的期望是如何通过计算的到其前继状态i的期望的。
假设状态i转移到状态j的概率为p,代价为w,
用E(j)表示从状态j到结束的期望,E(i)表示从状态i到结束的期望,E(i→ j)表示状态i下一步必须为状态j,再到结束的期望。
由期望的定义可以知道:
E(j)=p1*w1+p2*w2+p3*w3+...+pn*wn(即第一种情况的概率*权值+第二种情况的概率*权值+...)
然后如果钦定i状态必须转移到j的话(代价为w),不那发现,
E(i→ j)=p1*(w1+w)+p2*(w2+w)+p3*(w3+w)+...+pn*(wn+w)
注意到了么,从i→ j这个状态到结束的情况数没有变化,每种情况的概率也没变,唯一的变化只是每种情况的权值都加了w。
而通常倒着做的dp,我们定义的状态往往是表示从该状态出发到结束的期望,即把该状态看成了子问题的起点。
所以E(j)中所有的概率之和p1+p2+p3+...+pn = 1
那么:E(i→ j)=p1*(w1+w)+p2*(w2+w)+p3*(w3+w)+...+pn*(wn+w)
=p1*w1+p2*w2+p3*w3+...+pn*wn + p1*w+p2*w+p3*w+..+pn*w
=E(j)+w
然后再把这个所谓的"钦定"改为"有p的概率从状态i到状态j",并累加进E(i):
E(i)+=p*E(i→ j)即E(i)+=p*(E(j)+w)
本题我们反向dp的转移就是这么推出来的。


那么回到之前的问题,为何那样正向dp就出错了:
同样地,我们设当前在i点,其前继状态为j点,从j转移到i有p的概率,代价为w,
用E(j)表示从起点到j点的期望距离,E(i)表示从起点到i点的期望距离,E(j→ i)表示i点由j点而来的情况下,从起点到i点的期望距离。
我们用期望定义来写出E(j)的构成:
E(j)=p1*w1+p2*w2+p2*w3+...+pn*wn
然后类似上面的步骤,我们钦定i状态必须由j状态转移而来:
E(j→ i)=p1*(w1+w)+p2*(w2+w)+p3*(w3+w)+...+pn*(wn+w)
当然这里还没有任何问题,同样的是情况数没有变化,每种情况的概率也没变,唯一的变化只是每种情况的权值都加了w。
我们继续,尝试化简E(j→ i):
E(j→ i)=p1*(w1+w)+p2*(w2+w)+p3*(w3+w)+...+pn*(wn+w)
=p1*w1+p2*w2+p3*w3+...+pn*wn + p1*w+p2*w+p3*w+..+pn*w
=E(j)+p1*w+p2*w+p3*w+..+pn*w
然后上式等于E(j)+w么?
问题就出在这里。
当然不,因为这个dp定义下,每个dp状态的起点都是1号点,也就是说,
E(j)里面每种情况的概率应该是:第一种从1点到j的情况的概率p1,第二种从1点到j点的情况的概率p2,第三种p3...pn
但是显然1点不会只到j点,(好吧除了之前搞笑用的第一组和第二组测试数据)
所以g(j) = p1+p2+p3+...+pn ≠ 1,
那么顺理成章地可以得到 E(j→ i) ≠ E(j) + w
也就可以得到,没有所谓的"钦定"而是换成概率p,E(i)也不能加上p*(E(j)+w),
所以正向dp错就错在$dp[v]+=\frac{dp[u]+e(边权)}{cnt[u]}$加的那个"dp[u]+e",


至于我之前说的正向dp也可以正确,泥萌应该也有点思路了吧:
因为构成来源状态的期望值的那些概率的和g(j)不等于1,所以不能直接加上权值w,
那么我们就在dp的同时维护出从起点到每个状态的概率g,
然后再看上面的E(j→ i) = E(j)+p1*w+p2*w+p3*w+..+pn*w = E(j) + g(j)*w
也就是说dp本题正向dp的转移写成$dp[v]+=\frac{dp[u]+g[u]*e(边权)}{cnt[u]}$就完成没问题啦。
(实测AC,代码在下面的注释部分)

啰啰嗦嗦地说了1mol,希望对泥萌在理解正向和反向进行期望dp方面能有所帮助。

代码:

#include<bits/stdc++.h>
#define MAXN 100005
using namespace std;
struct Edge{
int ent;
int to[MAXN*2],val[MAXN*2],nxt[MAXN*2],head[MAXN];
Edge():ent(2){}
void Adde(int u,int v,int w){
to[ent]=v; val[ent]=w;
nxt[ent]=head[u]; head[u]=ent++;
}
}E,F;
double dp[MAXN];
int order[MAXN],in[MAXN],cnt[MAXN];
int N,M,ont;
void bfs(){
static queue<int>Q;
Q.push(1);
while(!Q.empty()){
int u=Q.front(); Q.pop();
order[++ont]=u;
for(int e=E.head[u];e;e=E.nxt[e]){
int v=E.to[e];
in[v]--; if(!in[v]) Q.push(v);
}
}
}
int main(){
ios::sync_with_stdio(0);
cin>>N>>M;
for(int i=1,u,v,w;i<=M;i++)
cin>>u>>v>>w,E.Adde(u,v,w),in[v]++,cnt[u]++,F.Adde(v,u,w);
bfs();
for(int i=N-1;i>=1;i--){
int u=order[i];
for(int e=E.head[u];e;e=E.nxt[e]){
int v=E.to[e];
dp[u]+=(dp[v]+E.val[e])/cnt[u];
}
}
cout<<fixed<<setprecision(2)<<dp[1]<<endl; /*正推
static double g[MAXN]; g[1]=1;
for(int i=2;i<=N;i++){
int u=order[i];
for(int e=F.head[u];e;e=F.nxt[e]){
int v=F.to[e];
dp[u]+=(dp[v]+g[v]*F.val[e])/cnt[v];
g[u]+=g[v]/cnt[v];
}
}
cout<<fixed<<setprecision(2)<<dp[N]<<endl;
*/
return 0;
}

  

●Joyoi 绿豆蛙的归宿的更多相关文章

  1. 【BZOJ3036】绿豆蛙的归宿 拓补排序+概率

    [BZOJ3036]绿豆蛙的归宿 Description 随着新版百度空间的下线,Blog宠物绿豆蛙完成了它的使命,去寻找它新的归宿. 给出一个有向无环的连通图,起点为1终点为N,每条边都有一个长度. ...

  2. BZOJ3036: 绿豆蛙的归宿&Wikioi2488:绿豆蛙的归宿

    3036: 绿豆蛙的归宿 Time Limit: 2 Sec  Memory Limit: 128 MBSubmit: 108  Solved: 73[Submit][Status] Descript ...

  3. BZOJ 3036: 绿豆蛙的归宿( 期望dp )

    从终点往起点倒推 . 在一个图 考虑点 u , 出度为 s : s = 0 , d[ u ] = 0 ; s ≠ 0 , 则 d( u ) = ( ∑ d( v ) ) / s ( ( u , v ) ...

  4. BZOJ3036绿豆蛙的归宿

    BZOJ3036绿豆蛙的归宿 锲下陟凝 褰宓万 郝瓦痕膳 叶诙摞 А知π剧 椐猊∫距 屠缲佗 ゲ蕖揪 俜欧彖鹤 磲砩ほ #琛扶 觅电闸ス 捆鳢げ 浜窠 魂睨"烁 蕞滗浼 洒ヂ跪 ...

  5. [COGS 1065] 绿豆蛙的归宿

    先贴题面w 1065. [Nescafe19] 绿豆蛙的归宿 ★   输入文件:ldfrog.in   输出文件:ldfrog.out   简单对比时间限制:1 s   内存限制:128 MB 随着新 ...

  6. P4316 绿豆蛙的归宿(期望)

    P4316 绿豆蛙的归宿 因为非要用bfs所以稍微麻烦一点qwq(大家用的都是dfs) 其实问题让我们求的就是经过每条边的概率*边权之和 我们可以用bfs把图遍历一遍处理概率,顺便把每条边的概率*边权 ...

  7. 【BZOJ 3036】 3036: 绿豆蛙的归宿 (概率DP)

    3036: 绿豆蛙的归宿 Time Limit: 2 Sec  Memory Limit: 128 MBSubmit: 491  Solved: 354 Description 随着新版百度空间的下线 ...

  8. [cogs1065]绿豆蛙的归宿

    1065. [Nescafe19] 绿豆蛙的归宿 [题目描述] 给出一个有向无环的连通图,起点为1终点为N,每条边都有一个长度.绿豆蛙从起点出发,走向终点.到达每一个顶点时,如果有K条离开该点的道路, ...

  9. codevs 2488 绿豆蛙的归宿

    2488 绿豆蛙的归宿 http://codevs.cn/problem/2488/  时间限制: 1 s  空间限制: 64000 KB  题目等级 : 黄金 Gold   题目描述 Descrip ...

随机推荐

  1. 第二次作业--------STEAM

    --------------------------------------第一部分 产品介绍----------------------------------------------------- ...

  2. C语言博客作业—函数

    一.PTA实验作业 题目1:使用函数输出水仙花数 1. 本题PTA提交列表 2. 设计思路 (1)首先定义函数narcissistic(number)判断number是否为水仙花数: (2)narc用 ...

  3. 每日冲刺报告——Day3(Java-Team)

    第三天报告(11.4  周六) 团队:Java-Team 成员: 章辉宇(284) 吴政楠(286) 陈阳(PM:288) 韩华颂(142) 胡志权(143) github地址:https://git ...

  4. Beta预备会议

    1. 讨论组长是否重选的议题和结论. 我们小组决定组长更换为林洋洋同学,他Web开发经验比较丰富,对任务的分配会更加明确,由于上一阶段中存在进度偏慢的问题,我们希望在Beta阶段通过更好的分工安排来保 ...

  5. android批量打包

    http://blog.csdn.net/johnny901114/article/details/48714849

  6. String s=new String("abc")产生了几个对象?[权威面试版]

    以下总结是我逛论坛 将零零碎碎的知识整理起来,方便自己记忆和阅读,顺便分享出来给大家学习. 若 String s=new String("abc"); 为第一句代码 则会产生两个对 ...

  7. GIT入门笔记(10)- 多种撤销修改场景和对策

    场景1:当你改乱了工作区某个文件的内容,想直接丢弃工作区的修改时,用命令git checkout -- file. 场景2:当你不但改乱了工作区某个文件的内容,还添加到了暂存区时,想丢弃修改,分两步, ...

  8. 浅显易懂的谈一谈python中的装饰器!!

    hello大家好~~我是稀里糊涂林老冷,一天天稀里糊涂的. 前一段时间学习了装饰器,觉着这东西好高大上哇靠!!哈哈,一定要总结一下,方便以后自己查阅,也希望帮助其他伙伴们共同进步! 装饰器: 大家可以 ...

  9. centos6.5时间相关

    时间同步 service ntpdate start 开启网络时间同步

  10. 服务器批量管理软件ansible安装以及配置

    1.yum安装(管理主机以及被管理主机都需要安装) yum install epel-release yum install ansible 2.配置管理主机 vim /etc/ansible/hos ...