hdu 5637 BestCoder Round #74 (div.2)
Transform
给出nn个整数, 对于一个整数xx, 你可以做如下的操作若干次: + 令xx的二进制表示为\overline{b_{31}b_{30}...b_0}b31b30...b0, 你可以翻转其中一个位.
+ 令yy是给出的其中一个整数, 你可以把xx变为x \oplus yx⊕y, 其中\oplus⊕表示位运算里面的异或操作. 现在有若干整数对(S, T)(S,T), 对于每对整数你需要找出从SS变成TT的最小操作次数.
输入包含多组数据. 第一行有一个整数TT (T \le 20)(T≤20), 表示测试数据组数. 对于每组数据: 第一行包含两个整数nn和mm (1 \le n \le 15, 1 \le m \le 10^5)(1≤n≤15,1≤m≤105), 表示给出整数的数目和询问的数目. 接下来一行包含nn个用空格分隔的整数a_1, a_2, ..., a_na1,a2,...,an (1 \le a_i \le 10^5)(1≤ai≤105). 接下来mm行, 每行包含两个整数s_isi和t_iti (1 \le s_i, t_i \le 10^5)(1≤si,ti≤105), 代表一组询问.
对于每组数据, 输出一个整数S=(\displaystyle\sum_{i=1}^{m} i \cdot z_i) \text{ mod } (10^9 + 7)S=(i=1∑mi⋅zi) mod (109+7), 其中z_izi是第ii次询问的答案.
1
3 3
1 2 3
3 4
1 2
3 9
10
3 \to 43→4 (2次操作): 3 \to 7 \to 43→7→4 1 \to 21→2 (1次操作): 1 \oplus 3 = 21⊕3=2 3 \to 93→9 (2次操作): 3 \to 1 \to 93→1→9
/*
hdu 5637 给你n个数,然后对于x有两种操作:
1.改变x二进制中的一位,即1->0 or 0->1
2.将x与n个数中的t异或得到 x^t
求最后得到y的最小操作数 最开始想到求出x^y,但是不知道怎么处理。如果每个询问都进行一次搜索的话感觉
会TLE,为什么就没想到预处理出来- -! 正解:
先把上面两种操作得到所有情况求出来,然后从x->y也就是异或上(x^y),而这个值
的最小步数已经处理出来,直接进行O(1)的查询即可 hhh-2016-03-06 12:12:08
*/
#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>
#include <map>
#include <queue>
#include <algorithm>
using namespace std;
typedef long long ll;
#define LL(x) (x<<1)
#define RR(x) (x<<1|1)
#define MID(a,b) (a+((b-a)>>1))
const int maxn=100500;
const int MOD = 1e9+7; int a[maxn];
int step[maxn<<2];
int tp[maxn<<2];
int y,n;
int ans ; void bfs()
{
memset(step,-1,sizeof(step));
int star = 0,tail = 0;
tp[0] = 0,step[0] = 0;
while(star <= tail)
{
int cur = tp[star];
for(int i =1; i <= n;i++)
{
int t = cur^a[i];
if(step[t] != -1)
continue;
tp[++tail] = t;
step[t] = step[cur]+1;
}
for(int i =0;i <= 17;i++)
{
int t = cur^(1<<i);
if(step[t] != -1)
continue;
tp[++tail] = t;
step[t] = step[cur]+1;
}
star++;
}
return ;
} int main()
{
int t,q;
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&q);
for(int i =1; i <= n; i++)
{
scanf("%d",&a[i]);
}
bfs();
int x,y;
ll sum = 0;
for(int i = 1;i <= q;i++)
{
scanf("%d%d",&x,&y);
int ans = step[x^y];
sum = (sum+(ll)(i*ans)%MOD)%MOD;
}
printf("%I64d\n",sum%MOD); }
return 0;
}
hdu 5637 BestCoder Round #74 (div.2)的更多相关文章
- hdu 5636 搜索 BestCoder Round #74 (div.2)
Shortest Path Accepts: 40 Submissions: 610 Time Limit: 4000/2000 MS (Java/Others) Memory Limit: ...
- hdu5635 BestCoder Round #74 (div.2)
LCP Array Accepts: 131 Submissions: 1352 Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 13 ...
- BestCoder Round #74 (div.2)
组合 1001 LCP Array 第一题就小难,出题的好像是浙大的大牛? 找到一个规律:a[i] = x, s[i..i+x]都想同.a[i] = a[i+1] + 1 (a[i] > 0), ...
- HDU 5596/BestCoder Round #66 (div.2) GTW likes math 签到
GTW likes math Memory Limit: 131072/131072 K (Java/Others) 问题描述 某一天,GTW听了数学特级教师金龙鱼的课之后,开始做数学<从自主 ...
- hdu 5600 BestCoder Round #67 (div.2)
N bulbs Accepts: 275 Submissions: 1237 Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 655 ...
- BestCoder Round #74 (div.1) 1002Shortest Path(hdoj5636)
哈哈哈哈,我就知道这道题目再扔给我,我还是不会,就是这么菜,哈哈哈 一开始官方题解就没搞懂-然后就看了一下别人的代码,水水过就算了.今天拿到-GG: 题意: 一开始,有一张原图,有一条长度为n的链. ...
- HDU5638 / BestCoder Round #74 (div.1) 1003 Toposort 线段树+拓扑排序
Toposort 问题描述 给出nn个点mm条边的有向无环图. 要求删掉恰好kk条边使得字典序最小的拓扑序列尽可能小. 输入描述 输入包含多组数据. 第一行有一个整数TT, 表示测试数据组数. 对 ...
- BestCoder Round #69 (div.2) Baby Ming and Weight lifting(hdu 5610)
Baby Ming and Weight lifting Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K ( ...
- BestCoder Round #68 (div.2) tree(hdu 5606)
tree Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submis ...
随机推荐
- JAVA委托事件处理机制
1)事件:用户对程序的某一种功能性操作. Java中的事件主要有两种: 1.组件类事件 componentEvent.ContainerEvent.WindowEvent.FocusEvent.Pai ...
- DES MEI号码加密
对于加密来说,使用DES加密解密很好,但是为了使不同设备的密文不一样,可以使用 固定字符串 + 设备IMEI号码 加密的方式,这样可以分辨不同手机,限制手机的使用(若是注册,一个手机只有一个IMEI号 ...
- 关于java中的数组
前言:最近刚刚看完了<Java编程思想>中关于数组的一章,所有关于Java数组的知识,应该算是了解的差不多了.在此再梳理一遍,以便以后遇到模糊的知识,方便查阅. Java中持有对象的方式, ...
- 第四篇:用IntelliJ IDEA 搭建基于jersey的RESTful api
编译器:Intellij IDEA 系统环境: MAC OS 相关技术:Maven.tomcat 7.jdk8 1.创建项目 首先创建一个web Application项目(这里我们打算用maven引 ...
- CentOS 7 安装Graphite
Graphite简介 Graphite是一个Python编写的企业级开源监控工具,采用django框架,用来收集服务器所有的即时状态,用户请求信息,Memcached命中率,RabbitMQ消息服务器 ...
- PHP环境手动搭建wamp-----Apache+MySQL+PHP
首先下载分别下载Apache+MySQL+PHP. 然后分别解压到文件夹中. 1.安装Apache 1)检查80端口是否占用 说明:apache软件占用80软件,在计算机中一个端口只能被一个软件占用 ...
- Ubuntu 17.10.1安装, 定制
p { margin-bottom: 0.25cm; line-height: 120% } a:link { } 2018.4.7 Ubuntu 17.10.1安装, 定制, 后续搭建LAMP环境 ...
- Docker1.12.6+CentOS7.3 的安装
安装旧版的docker-engine-1.12.6 kubeadm init --api-advertise-addresses=172.16.160.211命令的时候,提示docker版本太新了 一 ...
- 新概念英语(1-103)The French Test
Lesson 103 The French test 法语考试 Listen to the tape then answer this question. How long did the exam ...
- Jetty入门(1-2)eclipse集成jetty插件并发布运行应用
一.eclipse集成jetty插件 1.从市场安装jetty插件 2.使用jetty插件发布应用和配置运行环境 debug配置默认共用上述run配置 3.使用jetty插件启动运行和停止运行选中的应 ...