设$t=\sqrt r$,原题转化为$\sum_{x=1}^n(4*\lfloor\frac{tx}2\rfloor-2*\lfloor tx\rfloor+1)$
考虑如何求$\sum_{x=1}^n\lfloor\frac{bt+c}ax\rfloor$
开始我写了一个真欧几里得来求直线下整点数目,然后由于里头含小数所以不对。
于是学习了一下新姿势,思想其实差不多。
先把a,b,c同时除以gcd(a,b,c),防止爆int。
之后把斜率变成$\frac{bt+c}a-\lfloor\frac{bt+c}a\rfloor$,并计算对应贡献。
第三步把x,y轴互换,这时斜率变成了倒数,即$\frac a{bt+c}=\frac {abt-ac}{b^2t^2-c^2}$
特判r是完全平方数的时刻,因为这样直线上会有点,所以减的时候会减多。
补充:真欧几里得算法:
$$\sum_{0<=x<n} \lfloor \frac{ax+b}{c} \rfloor=n*\lfloor \frac{b}{c} \rfloor+\frac{n*(n-1)}{2}*\lfloor \frac{a}{c} \rfloor+\sum_{0<=x<\lfloor \frac{(a\%c)*n+b\%c\quad}{c} \rfloor} \lfloor \frac{cx+(an+b)\%c}{a\%c} \rfloor$$

#include <cstdio>
#include <cmath> int T,n,r;
double t;
int gcd(int a,int b) {return b?gcd(b,a%b):a;}
int sol(int n,int a,int b,int c) {
if (!n) return ;
int tmp=gcd(gcd(a,b),c); a/=tmp; b/=tmp; c/=tmp;
tmp=(t*b+c)/a; int sum=1ll*n*(n+)*tmp>>;
c-=tmp*a; tmp=(t*b+c)*n/a;
return sum+n*tmp-sol(tmp,b*b*r-c*c,a*b,-a*c);
} int main() {
scanf("%d",&T);
while(T--) {
scanf("%d%d",&n,&r),t=sqrt(r);
if((int)t==t) printf("%d\n",(r&)?((n&)?-:):n);
else printf("%d\n",n+*sol(n,,,)-*sol(n,,,));
}
return ;
}

BZOJ3817 Sum(类欧几里得算法)的更多相关文章

  1. LOJ138 类欧几里得算法

    类欧几里得算法 给出 \(T\) 组询问,每组用 \(n, a, b, c, k_1, k_2\) 来描述.对于每组询问,请你求出 \[ \sum_{x = 0} ^ {n} x ^ {k_1} {\ ...

  2. [P5170] 类欧几里得算法

    "类欧几里得算法"第二题 P5170 [题意]已知\(n,a,b,c\),求 \[ \begin{aligned} f_{1}(a,b,c,n)&=\sum_{i=0}^n ...

  3. Solution -「Luogu 5170」类欧几里得算法

    推柿子大赛了属于是. 题目要求三个柿子,不妨分别记为: \[\begin {align} f (a, b, c, n) &= \sum \limits _{i = 0} ^{n} \lfloo ...

  4. Solution -「LOJ #138」「模板」类欧几里得算法

    \(\mathcal{Description}\)   Link.   \(T\) 组询问,每次给出 \(n,a,b,c,k_1,k_2\),求 \[\sum_{x=0}^nx^{k_1}\left\ ...

  5. Luogu 5170 【模板】类欧几里得算法

    原理不难但是写起来非常复杂的东西. 我觉得讲得非常好懂的博客.   传送门 我们设 $$f(a, b, c, n) = \sum_{i = 0}^{n}\left \lfloor \frac{ai + ...

  6. [BZOJ2987]Earthquake:类欧几里得算法

    分析 类欧的式子到底是谁推的啊怎么这么神仙啊orz! 简单说一下这道题,题目中的约束条件可以转化为: \[ y \leq \frac{c-ax}{b} \] 有负数怎么办啊?转化一下: \[ y \l ...

  7. 洛谷P5170 【模板】类欧几里得算法(数论)

    传送门 此题剧毒,公式恐惧症患者请直接转去代码→_→ 前置芝士 基本数论芝士 题解 本题就是要我们求三个函数的值 \[f(a,b,c,n)=\sum_{i=0}^n \left\lfloor\frac ...

  8. [BZOJ3817]Sum

    [BZOJ3817]Sum 试题描述 给定正整数N,R.求 输入 第一行一个数 T,表示有 T 组测试数据. 接下来 T 行,每行两个正整数 n,r. 输出 输出 T 行,每行一个整数表示答案. 输入 ...

  9. 【LuoguP4433】[COCI2009-2010#1] ALADIN(含类欧几里得算法推导)

    题目链接 题意简述 区间赋值模意义下等差数列,询问区间和 \(N\leq 10^9,Q\leq 10^5\) Sol 每次操作就是把操作区间\([L,R]\)中的数赋值成: \[(X-L+1)*A\ ...

随机推荐

  1. bzoj千题计划242:bzoj4034: [HAOI2015]树上操作

    http://www.lydsy.com/JudgeOnline/problem.php?id=4034 dfs序,树链剖分 #include<cstdio> #include<io ...

  2. 如何进行服务器Linux系统下的ext文件系统修复

    一.故障描述 服务器是dell 730系列服务器,存储阵列是MD3200系列存储5T的Lun,操作系统是Linux centos 7,文件系统类型是EXT4,因意外断电,导致系统不能正常启动,修复之后 ...

  3. mongo数据库的常见操作

    连接mongodb数据库的命令查看对应数据库mongo.exeuse shujukuming;db.opportunity.findOne({"id":5}); db.opport ...

  4. Electron的代码调试

    刚接触Electron,尝试调试程序时,竟无从下手,所以把这个过程做了下记录 参考工程 根据Electron的官方文档:使用 VSCode 进行主进程调试:https://electronjs.org ...

  5. io使用的设计模式

    File f = new File("c:/a.txt"); 1. FileInputStream fis = new FileInputStream(f); 2. Reader ...

  6. 访问器属性:setter()函数和getter()函数

    1.干嘛用的? getter()函数:返回有效的值 setter()函数:调用它并传入数据,这个函数决定如何处理数据 2.具备哪些属性?如何定义? configurable(默认为true),enum ...

  7. Java:日期类Date与Calendar

    Timestamp类型与日期类型之间的转化? Timestamp timestamp = Timestamp.valueOf("2017-03-17 07:00:00"); Dat ...

  8. POJ-2031 Building a Space Station---MST + 空间距离

    题目链接: https://vjudge.net/problem/POJ-2031 题目大意: 就是给出三维坐标系上的一些球的球心坐标和其半径,搭建通路,使得他们能够相互连通.如果两个球有重叠的部分则 ...

  9. 类相关的BIF

    1.>>> issubclass(C,A)#判断c是A的子类,返回真假 2.>>> isinstance(b1,B) #判断c1是B类的实例化对象,返回真假 3.& ...

  10. 音频增益响度分析 ReplayGain 附完整C代码示例

    人们所熟知的图像方面的3A算法有: AF自动对焦(Automatic Focus)自动对焦即调节摄像头焦距自动得到清晰的图像的过程 AE自动曝光(Automatic Exposure)自动曝光的是为了 ...