Karen has just arrived at school, and she has a math test today!

The test is about basic addition and subtraction. Unfortunately, the teachers were too busy writing tasks for Codeforces rounds, and had no time to make an actual test. So, they just put one question in the test that is worth all the points.

There are n integers written on a row. Karen must alternately add and subtract each pair of adjacent integers, and write down the sums or differences on the next row. She must repeat this process on the values on the next row, and so on, until only one integer remains. The first operation should be addition.

Note that, if she ended the previous row by adding the integers, she should start the next row by subtracting, and vice versa.

The teachers will simply look at the last integer, and then if it is correct, Karen gets a perfect score, otherwise, she gets a zero for the test.

Karen has studied well for this test, but she is scared that she might make a mistake somewhere and it will cause her final answer to be wrong. If the process is followed, what number can she expect to be written on the last row?

Since this number can be quite large, output only the non-negative remainder after dividing it by \(10^9+7\).


题目大意:

给定N个数,每一次交错填写+-号,然后将结果放到下一行,然后继续交错填写,求最后一行的答案

解题报告:

好久以前的坑.....

手玩N=6和样例发现:



最后的结果可以表示为\(x1*a1+x2*a2+..+xn*an\),\(x\)是\(ai\)的系数,然后发现如果N为偶数就可以分偶数项和奇数项讨论,两者计算的方式是一样的.

再进一步又发现单独看奇偶项满足二项式定理,所以直接用组合数计算系数即可,但是对于N为4的倍数的情况答案是奇数项-偶数项,讨论一下即可

对于N不为偶数的情况我们可以先算出下一行然后做同样的步骤即可

#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#define RG register
#define il inline
#define iter iterator
#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)<(b)?(a):(b))
using namespace std;
typedef long long ll;
const int N=200005,mod=1e9+7;
int a[N],n;ll w[N],mul[N],ni[N];
ll qm(ll x,ll k){
ll sum=1;
while(k){
if(k&1)sum*=x,sum%=mod;
x*=x;x%=mod;k>>=1;
}
return sum;
}
ll C(int n,int k){return mul[n]*ni[k]%mod*ni[n-k]%mod;}
void work()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)scanf("%d",&a[i]);
if(n<=2){printf("%d\n",(a[1]+a[2])%mod);return ;}
if(n%2){
n--;
for(int i=1;i<=n;i++)
w[i]=(i%2?a[i]+a[i+1]:a[i]-a[i+1]),
w[i]=(w[i]%mod+mod)%mod;
}
else for(int i=1;i<=n;i++)w[i]=a[i];
mul[0]=1;ni[0]=1;
for(int i=1;i<=n;i++)
mul[i]=mul[i-1]*i%mod,ni[i]=qm(mul[i],mod-2);
ll ans=0;
int hx=(n%4?1:-1);
for(int i=1;i<=n;i+=2){
ans+=C((n>>1)-1,i>>1)*(w[i]+hx*w[i+1]%mod)%mod;
if(ans>=mod)ans-=mod;
}
ans=((ans%mod)+mod)%mod;
printf("%lld\n",ans);
} int main()
{
work();
return 0;
}

Codeforces Round #419 D. Karen and Test的更多相关文章

  1. codeforces round #419 E. Karen and Supermarket

    On the way home, Karen decided to stop by the supermarket to buy some groceries. She needs to buy a ...

  2. codeforces round #419 C. Karen and Game

    C. Karen and Game time limit per test 2 seconds memory limit per test 512 megabytes input standard i ...

  3. codeforces round #419 B. Karen and Coffee

    To stay woke and attentive during classes, Karen needs some coffee! Karen, a coffee aficionado, want ...

  4. codeforces round #419 A. Karen and Morning

    Karen is getting ready for a new school day! It is currently hh:mm, given in a 24-hour format. As yo ...

  5. Codeforces Round #419 (Div. 2) B. Karen and Coffee(经典前缀和)

    http://codeforces.com/contest/816/problem/B To stay woke and attentive during classes, Karen needs s ...

  6. Codeforces Round #419 (Div. 2) C. Karen and Game

    C. Karen and Game time limit per test 2 seconds memory limit per test 512 megabytes input standard i ...

  7. Codeforces Round #419 (Div. 2) B. Karen and Coffee

    To stay woke and attentive during classes, Karen needs some coffee! Karen, a coffee aficionado, want ...

  8. Codeforces Round #419 (Div. 2) E. Karen and Supermarket(树形dp)

    http://codeforces.com/contest/816/problem/E 题意: 去超市买东西,共有m块钱,每件商品有优惠卷可用,前提是xi商品的优惠券被用.问最多能买多少件商品? 思路 ...

  9. Codeforces Round #419 (Div. 2) A. Karen and Morning(模拟)

    http://codeforces.com/contest/816/problem/A 题意: 给出一个时间,问最少过多少时间后是回文串. 思路: 模拟,先把小时的逆串计算出来: ① 如果逆串=分钟, ...

随机推荐

  1. 随机ID添加

    var http = require("http"); var fs = require("fs"); var server = http.createServ ...

  2. 201621123031 《Java程序设计》第1周学习总结

    作业01-Java基本概念 1.本周学习总结 1.本周学习内容:Java发展史(简述).Java语言特点.JDK .JRE .JVM .Java的开发步骤.Java开发工具. 2.关键概念之间的联系: ...

  3. bzoj千题计划288:bzoj1876: [SDOI2009]SuperGCD

    http://www.lydsy.com/JudgeOnline/problem.php?id=1876 高精压位GCD 对于  GCD(a, b)  a>b 若 a 为奇数,b 为偶数,GCD ...

  4. JAVA线程池原理详解(1)

    线程池的优点 1.线程是稀缺资源,使用线程池可以减少创建和销毁线程的次数,每个工作线程都可以重复使用. 2.可以根据系统的承受能力,调整线程池中工作线程的数量,防止因为消耗过多内存导致服务器崩溃. 线 ...

  5. Vue-cli+Vue.js2.0+Vuex2.0+vue-router+es6+webpack+node.js脚手架搭建和Vue开发实战

    Vue.js是一个构建数据驱动的web界面的渐进式框架.在写这边文章时Vue版本分为1.0++和2.0++,这个是基于Vue2.0的项目. Vue-cli是构建单页应用的脚手架,这个可是官方的. Vu ...

  6. js中严格模式

    我们在js中可以使用"use strict";定义了我们在接下来的文档输写中 将按照严格模式进行: function(){ "use strict'; ;// 在这里我们 ...

  7. linux 进程间通信的3种高级方式及优缺点

    由于不同的进程运行在各自不同的内存空间中.一方对于变量的修改另一方是无法感知的.因此.进程之间的信息传递不可能通过变量或其它数据结构直接进行,只能通进程间通信来完成. 根据进程通信时信息量大小的不同, ...

  8. Mego开发文档 - 建模高级主题

    建模高级主题 在建模过程中我们还有许多其他情况,这里列出本框架中的有用特性来用于解决此类问题. 函数映射 我们可以将指定的CLR函数映射到数据库中的系统函数或自定义函数,该特性用于补充框架中未提供的数 ...

  9. kubernetes入门(08)kubernetes单机版的安装和使用

    kubectl get - 类似于 docker ps ,查询资源列表 kubectl describe - 类似于 docker inspect ,获取资源的详细信息 kubectl logs - ...

  10. api-gateway实践(01)服务网关 - 原型功能

    一.服务注册 1.增加组:LsqGrpA 2.增加版本:LsqVerA 3.增加api:LsqApiA 3.1.基本信息 3.2.前端定义 3.3.后端定义 二.服务上线和服务授权 1.服务上线 2. ...