Description

小A是一个名副其实的狂热的回合制游戏玩家。在获得了许多回合制游戏的世界级奖项之后,小A有一天突然想起了他小时候在江南玩过的一个回合制游戏。    游戏的规则是这样的,首先给定一个数F,然后游戏系统会产生T组游戏。每一组游戏包含N堆石子,小A和他的对手轮流操作。每次操作时,操作者先选定一个不小于2的正整数M (M是操作者自行选定的,而且每次操作时可不一样),然后将任意一堆数量不小于F的石子分成M堆,并且满足这M堆石子中石子数最多的一堆至多比石子数最少的一堆多1(即分的尽量平均,事实上按照这样的分石子万法,选定M和一堆石子后,它分出来的状态是固定的)。当一个玩家不能操作的时候,也就是当每一堆石子的数量都严格小于F时,他就输掉。(补充:先手从N堆石子中选择一堆数量不小于F的石子分成M堆后,此时共有N+M-1)堆石子,接下来小A从这N+M-1堆石子中选择一堆数量不小于F的石子,依此类推。
    小A从小就是个有风度的男生,他邀请他的对手作为先手。小A现在想要知道,面对给定的一组游戏,而且他的对手也和他一样聪明绝顶的话,究竟谁能够获得胜利?

Input

输入第一行包含两个正整数T和F,分别表示游戏组数与给定的数。
    接下来T行,每行第一个数N表示该组游戏初始状态下有多少堆石子。之后N个正整数,表示这N堆石子分别有多少个。

Output

输出一行,包含T个用空格隔开的0或1的数,其中0代表此时小A(后手)会胜利,而1代表小A的对手(先手)会胜利。

Sample Input

4 3
1 1
1 2
1 3
1 5

Sample Output

0 0 1 1

HINT

对于100%的数据,T<100,N<100,F<100000,每堆石子数量<100000。
  以上所有数均为正整数。

对于每一堆的数量,直接记忆化计算他的SG值

枚举分的块数i,考虑很多n/i都是相同的于是可以数论分块

但是剩下的n%i个石头数不一定相同

可以发现对于子状态异或和的计算,实际上是看数量为n/i+1的堆和n/i的堆的奇偶性

如果是偶数,那么异或和显然为0

所以我们发现i和i+2实际上算出来的子状态相同

于是数论分块时只枚举块头和块头+1就行了

复杂度O(n√n)

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
int SG[],F,n,ans,vis[];
int query(int x)
{int i,j,pos,size,re,tmp;
if (SG[x]!=-) return SG[x];
for (i=;i<=x;i=pos+)
{
pos=x/(x/i);
for (j=i;j<=i+&&j<=x;j++)
{
size=x/j;
re=x%j;
tmp=;
if (re&) tmp^=query(x/j+);
if ((j-re)&) tmp^=query(x/j);
vis[tmp]=x;
}
}
for (i=;;i++)
if (vis[i]!=x)
{
SG[x]=i;
break;
}
return SG[x];
}
int main()
{int T,i,x;
cin>>T>>F;
for (i=F;i<=;i++)
SG[i]=-;
for (i=;i<F;i++)
SG[i]=;
while (T--)
{
cin>>n;
ans=;
for (i=;i<=n;i++)
{
scanf("%d",&x);
ans^=query(x);
}
if (T==)
{
if (ans) printf("1\n");
else printf("0\n");
}
else
{
if (ans) printf("1 ");
else printf("0 ");
}
}
}

[HNOI2014]江南乐的更多相关文章

  1. bzoj 3576[Hnoi2014]江南乐 sg函数+分块预处理

    3576: [Hnoi2014]江南乐 Time Limit: 30 Sec  Memory Limit: 512 MBSubmit: 1929  Solved: 686[Submit][Status ...

  2. 洛谷 P3235 [HNOI2014]江南乐 解题报告

    P3235 [HNOI2014]江南乐 Description 两人进行 T 轮游戏,给定参数 F ,每轮给出 N 堆石子,先手和后手轮流选择石子数大于等于 F 的一堆,将其分成任意(大于1)堆,使得 ...

  3. bzoj3576: [Hnoi2014]江南乐

    Description 小A是一个名副其实的狂热的回合制游戏玩家.在获得了许多回合制游戏的世界级奖项之后,小A有一天突然想起了他小时候在江南玩过的一个回合制游戏.    游戏的规则是这样的,首先给定一 ...

  4. 洛谷P3235 [HNOI2014]江南乐(Multi-SG)

    题目描述 小A是一个名副其实的狂热的回合制游戏玩家.在获得了许多回合制游戏的世界级奖项之后,小A有一天突然想起了他小时候在江南玩过的一个回合制游戏. 游戏的规则是这样的,首先给定一个数F,然后游戏系统 ...

  5. luogu P3235 [HNOI2014]江南乐

    传送门 这题又是我什么时候做的(挠头) 首先是个和SG函数有关的博弈论,SG=0则先手必败.显然一堆石子就是一个游戏,而若干堆石子的SG值就是每堆SG的异或和,所以算出每堆石子SG就能知道答案 然后怎 ...

  6. 【BZOJ】3576: [Hnoi2014]江南乐

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3576 很显然,这是一个multi-nim游戏. 注意:1.一个点的SG值就是一个不等于它的 ...

  7. 【bzoj3576】 Hnoi2014—江南乐

    http://www.lydsy.com/JudgeOnline/problem.php?id=3576 (题目链接) 题意 给出一个数$F$,然后$n$堆石子,每次操作可以把一堆不少于$F$的石子分 ...

  8. luoguP3235 [HNOI2014]江南乐 数论分块 + 博弈论

    感觉其实很水? 题目就是一个Multi SG游戏,只需要预处理出所有的\(sg\)值即可\(O(Tn)\)计算 对于计算\(sg[n]\)而言,显然我们可以枚举划分了\(x\)堆来查看后继状态 那么, ...

  9. 【LG3235】 [HNOI2014]江南乐

    题目描述 给出\(n\)堆石子, 每次可以选择将大于某个数\(f\)一堆平均分成多个堆, 最后不能操作的失败. 题解 10pts 直接爆搜即可. 70pts 像我们对这类题目的常规操作那样,将一整个局 ...

随机推荐

  1. Spring MVC之适配器的获取及执行(RequestMappingHandlerAdapter)

    首先看下doDispatch()方法如何找到适合的适配器来执行方法的: protected HandlerAdapter getHandlerAdapter(Object handler) throw ...

  2. JavaScript(第二十五天)【事件绑定及深入】

    事件绑定分为两种:一种是传统事件绑定(内联模型,脚本模型),一种是现代事件绑定(DOM2级模型).现代事件绑定在传统绑定上提供了更强大更方便的功能.   一.传统事件绑定的问题 传统事件绑定有内联模型 ...

  3. 1013团队Beta冲刺day1

    项目进展 李明皇 今天解决的进度 点击首页list相应条目将信息传到详情页 明天安排 优化信息详情页布局 林翔 今天解决的进度 前后端连接成功 明天安排 开始微信前端+数据库写入 孙敏铭 今天解决的进 ...

  4. TRY

  5. 201621123054 《Java程序设计》第六周实验总结

    1. 本周学习总结 1.1 面向对象学习暂告一段落,请使用思维导图,以封装.继承.多态为核心概念画一张思维导图或相关笔记,对面向对象思想进行一个总结. 1.2 可选:使用常规方法总结其他上课内容. 2 ...

  6. verilog学习笔记(2)_一个小module及其tb

    module-ex_cnt module ex_cnt( input wire sclk, input wire rst_n, output wire[9:0] cnt ); reg [9:0] cn ...

  7. tornado web高级开发项目

    抽屉官网:http://dig.chouti.com/ 一.配置(settings) settings = { 'template_path': 'views', #模板文件路径 'static_pa ...

  8. 关于webService发布的wsdl中的import问题解决

    大家都知道jdk1.6及以后都支持了对webService的原生态的支持:它在发布时会生成一个wsdl和一个xsd(一个类只生成一个xsd)所以就保留了引用关系,如下: <?xml versio ...

  9. javascript 腾讯ABS云平台面试题及面试经历

    既然说到面试前端肯定是Javascript各种问,只好各种答. 面试题肯定离不了,最近热门的Vue.js,React.js,Angular.js,Gulp,Webpack还有各种Js问题,还有令人头痛 ...

  10. java的socket通信

    本文讲解如何用java实现网络通信,是一个非常简单的例子,我比较喜欢能够立马看到结果,所以先上代码再讲解具体细节. 服务端: import java.io.BufferedReader; import ...