Problem Description
King OMeGa catched three men who had been streaking in the street. Looking as idiots though, the three men insisted that it was a kind of performance art, and begged the king to free them. Out of hatred to the real idiots, the king wanted to check if they were lying. The three men were sent to the king's forest, and each of them was asked to pick a branch one after another. If the three branches they bring back can form a triangle, their math ability would save them. Otherwise, they would be sent into jail.
However, the three men were exactly idiots, and what they would do is only to pick the branches randomly. Certainly, they couldn't pick the same branch - but the one with the same length as another is available. Given the lengths of all branches in the forest,
determine the probability that they would be saved.
 
Input
An integer T(T≤100) will exist in the first line of input, indicating the number of test cases.
Each test case begins with the number of branches N(3≤N≤105).
The following line contains N integers a_i (1≤a_i≤105), which denotes the length of each branch, respectively.
 
Output
Output the probability that their branches can form a triangle, in accuracy of 7 decimal places.
 
Sample Input
2
4
1 3 3 4
4
2 3 3 4
 
Sample Output
0.5000000
1.0000000

题意:给你n个边,求从其中选出3个组成三角形的概率

思路:参考-kuangbin大神

如果我们用num[i]表示长度为i的木棍有多少个,对于1 3 3 4就是

num[] = {0 1 0 2 1}从卷积的公式来看

乘法第k位置上的值 便是a[i]*b[j](i + j == k),如果位置表示的是长度,num[]表示的个数,那么卷积过后我们得到的便是两边和的个数

{0 1 0 2 1}*{0 1 0 2 1} 卷积的结果应该是{0 0  1  0  4  2  4  4  1 }。

在求出了两条边的和后,枚举第三边

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
typedef long double ld;
const ld eps=1e-10;
const int inf = 0x3f3f3f;
const int MOD = 1e9+7; const double PI = acos(-1.0); struct Complex
{
double x,y;
Complex(double _x = 0.0,double _y = 0.0)
{
x = _x;
y = _y;
}
Complex operator-(const Complex &b)const
{
return Complex(x-b.x,y-b.y);
}
Complex operator+(const Complex &b)const
{
return Complex(x+b.x,y+b.y);
}
Complex operator*(const Complex &b)const
{
return Complex(x*b.x-y*b.y,x*b.y+y*b.x);
}
}; void change(Complex y[],int len)
{
int i,j,k;
for(i = 1,j = len/2; i < len-1; i++)
{
if(i < j) swap(y[i],y[j]);
k = len/2;
while(j >= k)
{
j-=k;
k/=2;
}
if(j < k) j+=k;
}
} void fft(Complex y[],int len,int on)
{
change(y,len);
for(int h = 2; h <= len; h <<= 1)
{
Complex wn(cos(-on*2*PI/h),sin(-on*2*PI/h));
for(int j = 0; j < len; j+=h)
{
Complex w(1,0);
for(int k = j; k < j+h/2; k++)
{
Complex u = y[k];
Complex t = w*y[k+h/2];
y[k] = u+ t;
y[k+h/2] = u-t;
w = w*wn;
}
}
}
if(on == -1)
{
for(int i = 0; i < len; i++)
y[i].x /= len;
}
} const int maxn = 401000;
Complex x1[maxn],x2[maxn];
ll sum[maxn];
ll num[maxn];
int a[maxn]; int main()
{
int T;
int n;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
int len = 1;
int len1;
memset(num,0,sizeof(num));
for(int i = 0; i < n; i++)
{
scanf("%d",&a[i]);
num[a[i]]++;
}
sort(a,a+n);
len1 = a[n-1] + 1;
while(len < len1*2) len <<= 1; for(int i = 0; i < len1; i++)
x1[i] = Complex(num[i],0);
for(int i = len1; i < len; i++)
x1[i] = Complex(0,0); fft(x1,len,1);
//fft(x2,len,1);
for(int i = 0; i < len; i++)
{
x1[i] =x1[i]*x1[i];
//cout << x1[i].x << " "<< x1[i].y <<endl;
}
fft(x1,len,-1);
for(int i = 0; i < len; i++)
{
sum[i] = (ll)(x1[i].x+0.5);
//cout << sum[i] << endl;
}
len = a[n-1] * 2;
for(int i = 0; i < n; i++) sum[a[i]+a[i]] --;
for(int i = 1; i <= len; i++) sum[i] /= 2;
for(int i = 1; i <= len; i++)
{
sum[i] += sum[i-1];
}
ll tot = (ll)n*(n-1)*(n-2)/6;
ll ans = 0; for(int i = 0; i < n; i++)
{
ans += sum[len]-sum[a[i]]; //两边之和大于第三边 ans -= (ll)(n-1-i) * i; //一个比自己大,一个比自己小
ans -= (n-1); //取了自己
ans -= (ll)(n-1-i)*(n-2-i)/2; //都比自己大
}
//printf("%.7lf\n",(double)ans/tot);
printf("%.7f\n",(double)ans/tot);
}
return 0;
}

  

hdu 4609 (FFT求解三角形)的更多相关文章

  1. HDU 4609 FFT模板

    http://acm.hdu.edu.cn/showproblem.php?pid=4609 题意:给你n个数,问任意取三边能够,构成三角形的概率为多少. 思路:使用FFT对所有长度的个数进行卷积(\ ...

  2. hdu 4609 FFT

    题意:给出一堆数,问从这些数中取3个能组成三角形的概率? sol:其实就是问从这些数里取3个组成三角形有多少种取法 脑洞大开的解法:用FFT 设一开始的数是1 3 3 4 作一个向量x,其中x[i]= ...

  3. HDU 4609 FFT+组合数学

    3-idiots Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total S ...

  4. HDU 4609 FFT+各种分类讨论

    思路: http://www.cnblogs.com/kuangbin/archive/2013/07/24/3210565.html 其实我是懒得写了.... 一定要define int long ...

  5. hdu 4609 3-idiots [fft 生成函数 计数]

    hdu 4609 3-idiots 题意: 给出\(A_i\),问随机选择一个三元子集,选择的数字构成三角形的三边长的概率. 一开始一直想直接做.... 先生成函数求选两个的方案(注意要减去两次选择同 ...

  6. 快速傅里叶变换应用之二 hdu 4609 3-idiots

    快速傅里叶变化有不同的应用场景,hdu4609就比较有意思.题目要求是给n个线段,随机从中选取三个,组成三角形的概率. 初始实在没发现这个怎么和FFT联系起来,后来看了下别人的题解才突然想起来:组合计 ...

  7. hdu 4609 3-idiots

    http://acm.hdu.edu.cn/showproblem.php?pid=4609 FFT  不会 找了个模板 代码: #include <iostream> #include ...

  8. hdu 5830 FFT + cdq分治

    Shell Necklace Time Limit: 16000/8000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)T ...

  9. hdu 5885 FFT

    XM Reserves Time Limit: 10000/10000 MS (Java/Others)    Memory Limit: 102400/102400 K (Java/Others)T ...

随机推荐

  1. NetFPGA-1G-CML Demo --- openflow_switch

    环境 ubuntu 14.04 vivado 15.2 ise 14.6 更多基础配置:http://www.cnblogs.com/wpqwpq/p/6771568.html 运行步骤 step1: ...

  2. css3 文字的设置

    1.text-shadow 有3个length参数,第1个表示水平偏移,第2个表示垂直偏移,第3个表示模糊(可选) .text11{text-shadow: 3px 3px 5px #f00 ;col ...

  3. BM V7000数据恢复成功案例;服务器数据恢复

    IBM V7000存储是一款定位中端的存储设备,很多企业选择该服务器作为存储,最近北亚数据恢复中心接到一例V7000服务器数据恢复案例,下面将对本次数据恢复的过程和数据恢复方法进行归纳总结,希望对各位 ...

  4. JAVA_SE基础——26.[深入解析]局部变量与成员变量的区别

    黑马程序员入学blog ... 如果这章节很难懂的话应该返回去先看  JAVA_SE基础--10.变量的作用域 定义的位置上区别: 1. 成员变量是定义在方法之外,类之内的. 2. 局部变量是定义在方 ...

  5. TF中conv2d和kernel_initializer方法

    conv2d中的padding 在使用TF搭建CNN的过程中,卷积的操作如下 convolution = tf.nn.conv2d(X, filters, strides=[1,2,2,1], pad ...

  6. 算法题丨Two Sum

    描述 Given an array of integers, return indices of the two numbers such that they add up to a specific ...

  7. SpringCloud的Hystrix(一) 一个消费者内的两个服务监控

    一.概念与定义 1.服务雪崩 在微服务架构中,整个系统按业务拆分出一个个服务,这些服务之间可以相互调用(RPC),为了保证服务的高可用,单个服务通常会集群部署. 但是由于网络原因或自身原因,服务并不能 ...

  8. GIT入门笔记(3)- git中的一些概念和原理

    一.git管理过程中所处的4个阶段: 工作目录(workspace) 暂存区(index) 本地仓库(local repository) 远程仓库(remote repository) 二.工作目录+ ...

  9. 新概念英语(1-21)Whick book

    Which book does the man want? A:Give me a book, please, Jane? B:Whick book? this one ? A:No, not tha ...

  10. hadoop2.7.3+spark2.1.0+scala2.12.1环境搭建(4)SPARK 安装

    hadoop2.7.3+spark2.1.0+scala2.12.1环境搭建(4)SPARK 安装 一.依赖文件安装 1.1 JDK 参见博文:http://www.cnblogs.com/liugh ...