hdu 4609 (FFT求解三角形)
However, the three men were exactly idiots, and what they would do is only to pick the branches randomly. Certainly, they couldn't pick the same branch - but the one with the same length as another is available. Given the lengths of all branches in the forest,
determine the probability that they would be saved.
Each test case begins with the number of branches N(3≤N≤105).
The following line contains N integers a_i (1≤a_i≤105), which denotes the length of each branch, respectively.
4
1 3 3 4
4
2 3 3 4
1.0000000
题意:给你n个边,求从其中选出3个组成三角形的概率
思路:参考-kuangbin大神
如果我们用num[i]表示长度为i的木棍有多少个,对于1 3 3 4就是
num[] = {0 1 0 2 1}从卷积的公式来看
乘法第k位置上的值 便是a[i]*b[j](i + j == k),如果位置表示的是长度,num[]表示的个数,那么卷积过后我们得到的便是两边和的个数
{0 1 0 2 1}*{0 1 0 2 1} 卷积的结果应该是{0 0 1 0 4 2 4 4 1 }。
在求出了两条边的和后,枚举第三边
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
typedef long double ld;
const ld eps=1e-10;
const int inf = 0x3f3f3f;
const int MOD = 1e9+7; const double PI = acos(-1.0); struct Complex
{
double x,y;
Complex(double _x = 0.0,double _y = 0.0)
{
x = _x;
y = _y;
}
Complex operator-(const Complex &b)const
{
return Complex(x-b.x,y-b.y);
}
Complex operator+(const Complex &b)const
{
return Complex(x+b.x,y+b.y);
}
Complex operator*(const Complex &b)const
{
return Complex(x*b.x-y*b.y,x*b.y+y*b.x);
}
}; void change(Complex y[],int len)
{
int i,j,k;
for(i = 1,j = len/2; i < len-1; i++)
{
if(i < j) swap(y[i],y[j]);
k = len/2;
while(j >= k)
{
j-=k;
k/=2;
}
if(j < k) j+=k;
}
} void fft(Complex y[],int len,int on)
{
change(y,len);
for(int h = 2; h <= len; h <<= 1)
{
Complex wn(cos(-on*2*PI/h),sin(-on*2*PI/h));
for(int j = 0; j < len; j+=h)
{
Complex w(1,0);
for(int k = j; k < j+h/2; k++)
{
Complex u = y[k];
Complex t = w*y[k+h/2];
y[k] = u+ t;
y[k+h/2] = u-t;
w = w*wn;
}
}
}
if(on == -1)
{
for(int i = 0; i < len; i++)
y[i].x /= len;
}
} const int maxn = 401000;
Complex x1[maxn],x2[maxn];
ll sum[maxn];
ll num[maxn];
int a[maxn]; int main()
{
int T;
int n;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
int len = 1;
int len1;
memset(num,0,sizeof(num));
for(int i = 0; i < n; i++)
{
scanf("%d",&a[i]);
num[a[i]]++;
}
sort(a,a+n);
len1 = a[n-1] + 1;
while(len < len1*2) len <<= 1; for(int i = 0; i < len1; i++)
x1[i] = Complex(num[i],0);
for(int i = len1; i < len; i++)
x1[i] = Complex(0,0); fft(x1,len,1);
//fft(x2,len,1);
for(int i = 0; i < len; i++)
{
x1[i] =x1[i]*x1[i];
//cout << x1[i].x << " "<< x1[i].y <<endl;
}
fft(x1,len,-1);
for(int i = 0; i < len; i++)
{
sum[i] = (ll)(x1[i].x+0.5);
//cout << sum[i] << endl;
}
len = a[n-1] * 2;
for(int i = 0; i < n; i++) sum[a[i]+a[i]] --;
for(int i = 1; i <= len; i++) sum[i] /= 2;
for(int i = 1; i <= len; i++)
{
sum[i] += sum[i-1];
}
ll tot = (ll)n*(n-1)*(n-2)/6;
ll ans = 0; for(int i = 0; i < n; i++)
{
ans += sum[len]-sum[a[i]]; //两边之和大于第三边 ans -= (ll)(n-1-i) * i; //一个比自己大,一个比自己小
ans -= (n-1); //取了自己
ans -= (ll)(n-1-i)*(n-2-i)/2; //都比自己大
}
//printf("%.7lf\n",(double)ans/tot);
printf("%.7f\n",(double)ans/tot);
}
return 0;
}
hdu 4609 (FFT求解三角形)的更多相关文章
- HDU 4609 FFT模板
http://acm.hdu.edu.cn/showproblem.php?pid=4609 题意:给你n个数,问任意取三边能够,构成三角形的概率为多少. 思路:使用FFT对所有长度的个数进行卷积(\ ...
- hdu 4609 FFT
题意:给出一堆数,问从这些数中取3个能组成三角形的概率? sol:其实就是问从这些数里取3个组成三角形有多少种取法 脑洞大开的解法:用FFT 设一开始的数是1 3 3 4 作一个向量x,其中x[i]= ...
- HDU 4609 FFT+组合数学
3-idiots Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total S ...
- HDU 4609 FFT+各种分类讨论
思路: http://www.cnblogs.com/kuangbin/archive/2013/07/24/3210565.html 其实我是懒得写了.... 一定要define int long ...
- hdu 4609 3-idiots [fft 生成函数 计数]
hdu 4609 3-idiots 题意: 给出\(A_i\),问随机选择一个三元子集,选择的数字构成三角形的三边长的概率. 一开始一直想直接做.... 先生成函数求选两个的方案(注意要减去两次选择同 ...
- 快速傅里叶变换应用之二 hdu 4609 3-idiots
快速傅里叶变化有不同的应用场景,hdu4609就比较有意思.题目要求是给n个线段,随机从中选取三个,组成三角形的概率. 初始实在没发现这个怎么和FFT联系起来,后来看了下别人的题解才突然想起来:组合计 ...
- hdu 4609 3-idiots
http://acm.hdu.edu.cn/showproblem.php?pid=4609 FFT 不会 找了个模板 代码: #include <iostream> #include ...
- hdu 5830 FFT + cdq分治
Shell Necklace Time Limit: 16000/8000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)T ...
- hdu 5885 FFT
XM Reserves Time Limit: 10000/10000 MS (Java/Others) Memory Limit: 102400/102400 K (Java/Others)T ...
随机推荐
- logging日志
import logging logging.basicConfig(filename='log.log', format='%(asctime)s - %(name)s - %(levelname) ...
- Flask Session 详解
会话session ,允许你在不同请求 之间储存信息.这个对象相当于用密钥签名加密的 cookie ,即用户可以查看你的 cookie ,但是如果没有密钥就无法修改它. from flask impo ...
- ruby:TypeError: 对象不支持此属性或方法
解决办法. 1.下载对应版本 下载node.js,根据ruby版本决定下载32还是x64,我的ruby版本x64 https://npm.taobao.org/mirrors/node/v8.9.3/ ...
- AS 实机测试 ADB.exe 提示
adb fail to open error: could not install *smartsocket* listener: cannot bind to 127.0.0.1:5037: 通常每 ...
- JAVA_SE基础——6.标识符&关键字
学会写helloworld之后, 我们就开始来认识标识符&关键字 一.标识符 标识符是指可被用来为类.变量或方法等命名的字符序列,换言之,标识符就是用户自定义的名称来标识类.变量或方法等.更 ...
- JMM简介
JMM:Java Memory Model(Java内存模型),围绕着在并发过程中如何处理可见性.原子性.有序性这三个特性而建立的模型. 可见性:JMM提供了volatile变量定义.final.sy ...
- SpringMvc采用 http+json 实现前后端交互
演示列表 报文表示 一.Json请求和Json响应 实现:Spring4.1.1.RELEASE + jackson2.4.4+JQuery1.10.2 1.pom.xml <propertie ...
- Spring Security入门(2-3)Spring Security 的运行原理 3
关键组件关系 FilterSecurityInterceptor--- authenticationManager --- UserDetailService--- accessDecisionMan ...
- 使用Git进行代码版本管理及协同工作
Git简介: git是一种较为先进的代码版本管理及协同工作平台,采用分布式文件块存储: 1. 分布式: 代码保存在所有协同成员的计算机上,网速较差时依然可用:而传统的集中式代码版本管理系统则较难脱离 ...
- Python基础-用户验证
一.项目需求 1.根据用户名和密码,验证用户是否可登陆 2.允许一次执行可验证三次 3.当用户名输错三次后,该用户名锁定,永久不可登陆 二.代码如下 #!/usr/bin/env python #-* ...