Resource Archiver

Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 100000/100000 K (Java/Others)
Total Submission(s): 2382    Accepted Submission(s): 750

Problem Description
Great! Your new software is almost finished! The only thing left to do is archiving all your n resource files into a big one.
Wait a minute… you realized that it isn’t as easy as you thought. Think about the virus killers. They’ll find your software suspicious, if your software contains one of the m predefined virus codes. You absolutely don’t want this to happen.
Technically, resource files and virus codes are merely 01 strings. You’ve already convinced yourself that none of the resource strings contain a virus code, but if you make the archive arbitrarily, virus codes can still be found somewhere.
Here comes your task (formally): design a 01 string that contains all your resources (their occurrences can overlap), but none of the virus codes. To make your software smaller in size, the string should be as short as possible.
 
Input
There will be at most 10 test cases, each begins with two integers in a single line: n and m (2 <= n <= 10, 1 <= m <= 1000). The next n lines contain the resources, one in each line. The next m lines contain the virus codes, one in each line. The resources and virus codes are all non-empty 01 strings without spaces inside. Each resource is at most 1000 characters long. The total length of all virus codes is at most 50000. The input ends with n = m = 0.
 
Output
For each test case, print the length of shortest string.
 
Sample Input
2 2
1110
0111
101
1001
0 0
 
Sample Output
5
/*
hdu 3247 AC自动+状压dp+bfs处理 给你n个正常子串,m个病毒子串,求出最短的字符串(包含所有正常子串,不包含病毒串) 因为正常子串只有十个,所以考虑二进制来记录。
即dp[i][j]表示 包含的正常串的状态为i,最后一步的状态为j的最短情况.
然后试了下发现超内存 卒~ 然后膜拜大神,发现我们可以预处理出来正常串之间的最短距离. 像这样我们只需要枚举所有的
正常串. 而我原先那个思路需要枚举所有的节点总共需要dp[1<<10][60040]. 而对于通过bfs优化后
我们只需要枚举正常串 最多有11个 -> dp[1<<10][11]. hhh-2016-04-30 14:34:51
*/
#include <iostream>
#include <vector>
#include <cstring>
#include <string>
#include <cstdio>
#include <queue>
#include <algorithm>
#include <functional>
#include <map>
using namespace std;
#define lson (i<<1)
#define rson ((i<<1)|1)
typedef unsigned long long ll;
typedef unsigned int ul;
const int mod = 20090717;
const int INF = 0x3f3f3f3f;
const int N = 100050;
int cnt;
int n,m;
int dp[1<<10][205];
int G[205][205];
int pos[205];
struct Tire
{
int nex[N][2],fail[N],ed[N]; int root,L;
int newnode()
{
for(int i = 0; i < 2; i++)
nex[L][i] = -1;
ed[L++] = 0;
return L-1;
} void ini()
{
L = 0,root = newnode();
} void inser(char buf[],int val)
{
int len = strlen(buf);
int now = root;
for(int i = 0; i < len; i++)
{
int ta = buf[i]-'0';
if(nex[now][ta] == -1)
nex[now][ta] = newnode();
now = nex[now][ta];
}
if(val < 0)
ed[now] = val;
else
ed[now] = (1<<val);
} void build()
{
queue<int >q;
fail[root] = root;
for(int i = 0; i < 2; i++)
if(nex[root][i] == -1)
nex[root][i] = root;
else
{
fail[nex[root][i]] = root;
q.push(nex[root][i]);
}
while(!q.empty())
{
int now = q.front();
q.pop();
if(ed[fail[now]] < 0)
ed[now] = ed[fail[now]];
else if(ed[now] == 0)
ed[now] = ed[fail[now]];
for(int i = 0; i < 2; i++)
{
if(nex[now][i] == -1)
nex[now][i] = nex[fail[now]][i];
else
{
fail[nex[now][i]] = nex[fail[now]][i];
q.push(nex[now][i]);
}
}
}
}
int dis[N];
void Path(int k)
{
int now;
queue<int >q;
q.push(pos[k]);
memset(dis,-1,sizeof(dis));
dis[pos[k]] = 0;
while(!q.empty())
{
now = q.front();
q.pop();
for(int i =0;i < 2;i++)
{
int t = nex[now][i];
if(dis[t] < 0 && ed[t] >= 0)
{
dis[t] = dis[now]+1;
q.push(t);
}
}
}
for(int i = 0;i < cnt;i++)
{
G[k][i] = dis[pos[i]];
}
} int Min(int a,int b)
{
if(a < 0)
return b;
else if(b < 0)
return a;
else
return min(a,b);
} void solve()
{
memset(dp,-1,sizeof(dp));
dp[0][0] = 0; for(int i = 0;i < (1<<n);i++)
{
for(int j = 0;j < cnt;j++)
{
if(dp[i][j] < 0)
continue;
for(int k = 0;k < cnt;k++)
{
if(G[j][k] < 0)
continue;
int t = (i|ed[pos[k]]);
dp[t][k] = Min(dp[i][j] + G[j][k],dp[t][k]);
}
}
}
int ans = -1;
for(int i = 0;i < cnt;i++)
{
ans = Min(ans,dp[(1<<n)-1][i]);
}
cout << ans <<"\n";
}
}; Tire ac;
char buf[N];
int main()
{
while(scanf("%d%d",&n,&m)==2 && n && m)
{
ac.ini();
for(int i = 0; i < n; i++)
{
scanf("%s",buf);
ac.inser(buf,i);
}
for(int i =0 ; i < m; i++)
{
scanf("%s",buf);
ac.inser(buf,-1);
}
ac.build();
pos[0] = 0;
cnt = 1;
for(int i = 0; i < ac.L; i++)
{
if(ac.ed[i] > 0)
pos[cnt++] = i;
}
memset(G,-1,sizeof(G));
for(int i = 0; i < cnt; i++)
ac.Path(i);
ac.solve();
}
return 0;
}

  

hdu 3247 AC自动+状压dp+bfs处理的更多相关文章

  1. hdu 2825 aC自动机+状压dp

    Wireless Password Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  2. HDU 3247 Resource Archiver(AC自动机 + 状压DP + bfs预处理)题解

    题意:目标串n( <= 10)个,病毒串m( < 1000)个,问包含所有目标串无病毒串的最小长度 思路:貌似是个简单的状压DP + AC自动机,但是发现dp[1 << n][ ...

  3. BZOJ_3049_[Usaco2013 Jan]Island Travels _状压DP+BFS

    BZOJ_3049_[Usaco2013 Jan]Island Travels _状压DP+BFS Description Farmer John has taken the cows to a va ...

  4. HDU 3681 Prison Break(状压DP + BFS)题解

    题意:一张图,F是起点,Y是必须要到的点,D不能走,G可以充电.可以往四个方向走,每走一步花费一个电,走到G可以选择充满电或者不充,每个G只能充一次.问你走遍Y的最小初始点亮.number(G) + ...

  5. BZOJ1559 [JSOI2009]密码 【AC自动机 + 状压dp】

    题目链接 BZOJ1559 题解 考虑到这是一个包含子串的问题,而且子串非常少,我们考虑\(AC\)自动机上的状压\(dp\) 设\(f[i][j][s]\)表示长度为\(i\)的串,匹配到了\(AC ...

  6. HDU 5765 Bonds(状压DP)

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=5765 [题目大意] 给出一张图,求每条边在所有边割集中出现的次数. [题解] 利用状压DP,计算不 ...

  7. 计蒜客 30994 - AC Challenge - [状压DP][2018ICPC南京网络预赛E题]

    题目链接:https://nanti.jisuanke.com/t/30994 样例输入: 5 5 6 0 4 5 1 1 3 4 1 2 2 3 1 3 1 2 1 4 样例输出: 55 样例输入: ...

  8. HDU 3001 Travelling (状压DP,3进制)

    题意: 给出n<=10个点,有m条边的无向图.问:可以从任意点出发,至多经过同一个点2次,遍历所有点的最小费用? 思路: 本题就是要卡你的内存,由于至多可经过同一个点2次,所以只能用3进制来表示 ...

  9. hdu 4778 Gems Fight! 状压dp

    转自wdd :http://blog.csdn.net/u010535824/article/details/38540835 题目链接:hdu 4778 状压DP 用DP[i]表示从i状态选到结束得 ...

随机推荐

  1. 吝啬的国度 nyoj

    吝啬的国度 时间限制:1000 ms  |  内存限制:65535 KB 难度:3   描述 在一个吝啬的国度里有N个城市,这N个城市间只有N-1条路把这个N个城市连接起来.现在,Tom在第S号城市, ...

  2. zookeeper入门系列:概述

    zookeeper可谓是目前使用最广泛的分布式组件了.其功能和职责单一,但却非常重要. 在现今这个年代,介绍zookeeper的书和文章可谓多如牛毛,本人不才,试图通过自己的理解来介绍zookeepe ...

  3. mongodb 定时备份

    通过centos 脚步来执行备份操作,使用crontab实现定时功能,并删除指定天数前的备份 具体操作: 1.创建Mongodb数据库备份目录 mkdir -p /home/backup/mongod ...

  4. PC或者手机弹出窗效果

    http://layer.layui.com/ 这个网站提供弹窗,是在jq封装的,弹窗之后,背景页面还可以滑动. 这个里面的js可能也会包含css,这个css不能移动位置,否则会报错,还有谷歌浏览器在 ...

  5. Pandas速查手册中文版

    本文翻译自文章: Pandas Cheat Sheet - Python for Data Science ,同时添加了部分注解. 对于数据科学家,无论是数据分析还是数据挖掘来说,Pandas是一个非 ...

  6. ### Cause: org.apache.ibatis.binding.BindingException: Parameter 'name' not found. Available parameters are [arg1, arg0, param1, param2]

    org.apache.ibatis.exceptions.PersistenceException: ### Error updating database. Cause: org.apache.ib ...

  7. kubernetes入门(03)kubernetes的基本概念

    一.Pod 在Kubernetes集群中,Pod是创建.部署和调度的基本单位.一个Pod代表着集群中运行的一个进程,它内部封装了一个或多个应用的容器.在同一个Pod内部,多个容器共享存储.网络IP,以 ...

  8. 版本名称GA的含义:SNAPSHOT->alpha->beta->release->GA

    SNAPSHOT->alpha->beta->release->GA ----------------------------------------------------- ...

  9. python中 functools模块 闭包的两个好朋友partial偏函数和wraps包裹

    前一段时间学习了python当中的装饰器,主要利用了闭包的原理.后来呢,又见到了python当中的functools模块,里面有很多实用的功能.今天我想分享一下跟装饰器息息相关的两个函数partial ...

  10. Mysql官方文档翻译系列-7.3.1 Establishing a Backup Policy

    原文链接 (https://dev.mysql.com/doc/refman/5.7/en/backup-policy.html) 正文 To be useful, backups must be s ...