P1613 跑路

题目描述

小\(A\)的工作不仅繁琐,更有苛刻的规定,要求小\(A\)每天早上在\(6:00\)之前到达公司,否则这个月工资清零。可是小\(A\)偏偏又有赖床的坏毛病。于是为了保住自己的工资,小\(A\)买了一个十分牛B的空间跑路器,每秒钟可以跑\(2^k\)千米(\(k\)是任意自然数)。当然,这个机器是用\(long\) \(int\)存的,所以总跑路长度不能超过\(max\) \(long\) \(int\)千米。小\(A\)的家到公司的路可以看做一个有向图,小\(A\)家为点\(1\),公司为点\(n\),每条边长度均为一千米。小\(A\)想每天能醒地尽量晚,所以让你帮他算算,他最少需要几秒才能到公司。数据保证\(1\)到\(n\)至少有一条路径。

输入输出格式

输入格式:

第一行两个整数\(n\),\(m\),表示点的个数和边的个数。

接下来m行每行两个数字\(u\),\(v\),表示一条\(u\)到\(v\)的边。

输出格式:

一行一个数字,表示到公司的最少秒数。

说明

\(50\)%的数据满足最优解路径长度\(<=1000\);

\(100\)%的数据满足\(n<=50\),\(m<=10000\),最优解路径长度\(<=\) \(max\) \(long\) \(int\)。


首先,要确保自己的语文水平苟的住,这个鬼机器,每秒跑\(2^kkm\)的话是要跑刚好那么长的,不能多也不能少。

那么岂不是代表,只有长为\(2^kkm\)的链才算是有效边吗?

我们把所有有效边连上,跑最短路不就行了嘛。

如何求有效边?

\(2^k?\)有没有想到什么?

\(2^k=2^{k-1}+2^{k-1}?\)

对,就是倍增啊!

令\(g[u][v][j]\)代表点\(u\)到点\(v\)存在或不存在长度为\(2^j\)的边。

当\(g[u][k][j-1]\)和\(g[k][v][j-1]\)同时存在时,

\(g[u][v][j]\)存在。(\(k\)是枚举的一维)


#include <cstdio>
#include <cstring>
#include <queue>
using namespace std;
const int N=52;
int g[N][N][70],n,m;
//g[i][j][k]表示i点到j点存在边权为2^k的路
int g0[N][N];
int read()
{
    int x=0;char c=getchar();
    while(c<'0'||c>'9') c=getchar();
    while(c>='0'&&c<='9') {x=x*10+c-'0';c=getchar();}
    return x;
}
queue <int > q;
int used[N],dis[N];
void spfa()
{
    memset(used,0,sizeof(used));
    used[1]=1;
    memset(dis,0x3f,sizeof(dis));
    dis[1]=0;
    q.push(1);
    while(!q.empty())
    {
        int u=q.front();
        q.pop();
        used[u]=0;
        for(int v=1;v<=n;v++)
            if(g0[u][v]&&dis[v]>dis[u]+g0[u][v])
            {
                dis[v]=dis[u]+g0[u][v];
                if(!used[v])
                {
                    used[v]=1;
                    q.push(v);
                }
            }
    }
}

int main()
{
    memset(g,0,sizeof(g));
    memset(g0,0,sizeof(g0));
    n=read(),m=read();
    int u,v;
    for(int i=1;i<=m;i++)
    {
        u=read(),v=read();
        g[u][v][0]=1;
        //f[u][v][0]=v;
    }
    for(int j=1;j<=64;j++)
        for(int k=1;k<=n;k++)
            for(u=1;u<=n;u++)
                for(v=1;v<=n;v++)
                    if(g[u][k][j-1]&&g[k][v][j-1])
                        g[u][v][j]=1;
    for(u=1;u<=n;u++)
        for(v=1;v<=n;v++)
            for(int j=0;j<=64;j++)
                if(g[u][v][j])
                {
                    g0[u][v]=1;
                    break;
                }
    spfa();
    printf("%d\n",dis[n]);
    return 0;
}

2018.5.2

洛谷 P1613 解题报告的更多相关文章

  1. 洛谷 P1462 解题报告

    P1462 通往奥格瑞玛的道路 题目背景 在艾泽拉斯大陆上有一位名叫歪嘴哦的神奇术士,他是部落的中坚力量 有一天他醒来后发现自己居然到了联盟的主城暴风城 在被众多联盟的士兵攻击后,他决定逃回自己的家乡 ...

  2. 洛谷 P1879 解题报告

    P1879 [USACO06NOV]玉米田Corn Fields 题目描述 农场主\(John\)新买了一块长方形的新牧场,这块牧场被划分成\(M\)行\(N\)列\((1 ≤ M ≤ 12; 1 ≤ ...

  3. 洛谷 P1069 解题报告

    P1069 细胞分裂 题目描述 \(Hanks\)博士是\(BT\) (\(Bio-Tech\),生物技术) 领域的知名专家.现在,他正在为一个细胞实验做准备工作:培养细胞样本. \(Hanks\) ...

  4. 洛谷 P2491 解题报告

    P2491 消防 题目描述 某个国家有n个城市,这n个城市中任意两个都连通且有唯一一条路径,每条连通两个城市的道路的长度为zi(zi<=1000). 这个国家的人对火焰有超越宇宙的热情,所以这个 ...

  5. 洛谷 P2587 解题报告

    P2587 [ZJOI2008]泡泡堂 题目描述 第XXXX届NOI期间,为了加强各省选手之间的交流,组委会决定组织一场省际电子竞技大赛,每一个省的代表队由n名选手组成,比赛的项目是老少咸宜的网络游戏 ...

  6. 洛谷 P1054 解题报告

    P1054 等价表达式 题目描述 明明进了中学之后,学到了代数表达式.有一天,他碰到一个很麻烦的选择题.这个题目的题干中首先给出了一个代数表达式,然后列出了若干选项,每个选项也是一个代数表达式,题目的 ...

  7. 洛谷 P1053 解题报告

    P1053 篝火晚会 题目描述 佳佳刚进高中,在军训的时候,由于佳佳吃苦耐劳,很快得到了教官的赏识,成为了"小教官".在军训结束的那天晚上,佳佳被命令组织同学们进行篝火晚会.一共有 ...

  8. 洛谷 P1057 解题报告

    P1057 传球游戏 题目描述 上体育课的时候,小蛮的老师经常带着同学们一起做游戏.这次,老师带着同学们一起做传球游戏. 游戏规则是这样的:n个同学站成一个圆圈,其中的一个同学手里拿着一个球,当老师吹 ...

  9. 洛谷 P1430 解题报告

    P1430 序列取数 题目描述 给定一个长为\(n\)的整数序列\((n<=1000)\),由\(A\)和\(B\)轮流取数(\(A\)先取).每个人可从序列的左端或右端取若干个数(至少一个), ...

随机推荐

  1. 9.7、Libgdx之振动器

    (官网:www.libgdx.cn) 振动器允许你提醒手机用户. 振动器智能应用在Android设备中,需要特殊的权限: android.permission.VIBRATE 可以通过如下方式实现振动 ...

  2. [SqlServer]2008转到2005的步骤步骤

    2008转到2005的步骤步骤 1. 生成for 2005版本的数据库脚本 2005 的manger studio -- 打开"对象资源管理器"(没有的话按F8), 连接到你的实例 ...

  3. 简单说说Android自定义view学习推荐的方式

    这几天比较受关注,挺开心的,嘿嘿. 这里给大家总结一下学习自定义view的一些技巧.  以后写自定义view可能不会写博客了,但是可以开源的我会把源码丢到github上我的地址:https://git ...

  4. Android listView异步下载和convertView复用产生的错位问题

    1:Item图片显示重复 这个显示重复是指当前行Item显示了之前某行Item的图片. 比如ListView滑动到第2行会异步加载某个图片,但是加载很慢,加载过程中ListView已经滑动到了第14行 ...

  5. iOS监听模式系列之iOS开发证书、秘钥

    补充--iOS开发证书.秘钥 iOS开发过程中如果需要进行真机调试.发布需要注册申请很多证书,对于初学者往往迷惑不解,再加上今天的文章中会牵扯到一些特殊配置,这里就简单的对iOS开发的常用证书和秘钥等 ...

  6. 网站开发进阶(十四)JS实现二维码生成

    JS实现二维码生成 绪 项目开发原语:已然花费半天的时间,仍旧未能将二维码显示在订单中.但是可以在单个页面中显示二维码,结合到angularjs的控制器中就失效了,自己是真的找不到其中的原因了.费解! ...

  7. 粒子滤波(PF:Particle Filter)

    先介绍概念:来自百科 粒子滤波指:通过寻找一组在状态空间中传播的随机样本来近似的表示概率密度函数,再用样本均值代替积分运算,进而获得系统状态的最小方差估计的过程,波动最小,这些样本被形象的称为&quo ...

  8. Android FrameWork浅识

    接收讯息及事件 储存共享数据 处理UI互动的事情 幕后服务(播放背景音乐) 在框架的手中,它的生命的周期完全由框架来控制,new也是由框架.它的逻辑调用则是自己实现,确保强龙的地位 框架反向来控制相应 ...

  9. Android Hal层简要分析

    Android Hal层简要分析 Android Hal层(即 Hardware Abstraction Layer)是Google开发的Android系统里上层应用对底层硬件操作屏蔽的一个软件层次, ...

  10. Markdown语法及编辑器

    宗旨 Markdown 的目标是实现「易读易写」. 可读性,无论如何,都是最重要的.一份使用 Markdown 格式撰写的文件应该可以直接以纯文本发布,并且看起来不会像是由许多标签或是格式指令所构成. ...