本节从整体上讲解了输入子系统的框架结构。有助于读者从整体上认识linux的输入子系统。在陷入代码分析的过程中,通过本节的知识能够找准方向,明白原理。

本节重点:

  • 输入子系统的框架结构
  • 各层对应内核中的文件位置
  • 输入子系统的事件处理机制
  • 输入子系统的驱动层基本操作流程
  • 输入子系统的驱动层常用函数

本节难点:

  • 输入子系统的事件处理机制
  • 输入子系统的驱动工作流程

1    初识linux输入子系统

linux输入子系统(linux input subsystem)从上到下由三层实现,分别为:输入子系统事件处理层(EventHandler)、输入子系统核心层(InputCore)和输入子系统设备驱动层。

对于输入子系统设备驱动层而言,主要实现对硬件设备的读写访问,中断设置,并把硬件产生的事件转换为核心层定义的规范提交给事件处理层。

对于核心层而言,为设备驱动层提供了规范和接口。设备驱动层只要关心如何驱动硬件并获得硬件数据(例如按下的按键数据),然后调用核心层提供的接口,核心层会自动把数据提交给事件处理层。

对于事件处理层而言,则是用户编程的接口(设备节点),并处理驱动层提交的数据处理。

对于linux输入子系统的框架结构如下图1所示:

图1  linux输入子系统框架结构

由上图所展现的内容就是linux输入子系统的分层结构。

/dev/input目录下显示的是已经注册在内核中的设备编程接口,用户通过open这些设备文件来打开不同的输入设备进行硬件操作。

事件处理层为不同硬件类型提供了用户访问及处理接口。例如当我们打开设备/dev/input/mice时,会调用到事件处理层的Mouse Handler来处理输入事件,这也使得设备驱动层无需关心设备文件的操作,因为Mouse Handler已经有了对应事件处理的方法。

输入子系统由内核代码drivers/input/input.c构成,它的存在屏蔽了用户到设备驱动的交互细节,为设备驱动层和事件处理层提供了相互通信的统一界面。

下图2简单描述了linux输入子系统的事件处理机制:

图2  linux输入子系统事件处理机制

由上图可知输入子系统核心层提供的支持以及如何上报事件到input event drivers。

作为输入设备的驱动开发者,需要做以下几步:

?           在驱动加载模块中,设置你的input设备支持的事件类型,类型参见表1设置

?           注册中断处理函数,例如键盘设备需要编写按键的抬起、放下,触摸屏设备需要编写按下、抬起、绝对移动,鼠标设备需要编写单击、抬起、相对移动,并且需要在必要的时候提交硬件数据(键值/坐标/状态等等)

?           将输入设备注册到输入子系统中

表1  Linux输入子系统支持的数据类型

EV_SYN     0x00    同步事件

EV_KEY     0x01    按键事件

EV_REL     0x02    相对坐标(如:鼠标移动,报告相对最后一次位置的偏移)

EV_ABS     0x03    绝对坐标(如:触摸屏或操作杆,报告绝对的坐标位置)

EV_MSC     0x04    其它

EV_SW      0x05    开关

EV_LED     0x11    按键/设备灯

EV_SND     0x12    声音/警报

EV_REP     0x14    重复

EV_FF      0x15    力反馈

EV_PWR    0x16    电源

EV_FF_STATUS    0x17   力反馈状态

EV_MAX    0x1f    事件类型最大个数和提供位掩码支持

由表1可知,设备所能表示的事件种类,一个设备可以选择一个或多个事件类型上报给输入子系统。

Linux输入子系统提供了设备驱动层上报输入事件的函数,在include/linux/input.h中:

voidinput_report_key(struct input_dev *dev, unsigned int code, int value);      //上报按键事件

voidinput_report_rel(struct input_dev *dev, unsigned int code, int value);       //上报相对坐标事件

voidinput_report_abs(struct input_dev *dev, unsigned int code, int value);              //上报绝对坐标事件

……

当提交输入设备产生的输入事件之后,需要调用下面的函数来通知输入子系统,以处理设备产生的完整事件:

  1. void input_sync(struct input_dev *dev);

2    输入设备驱动的简单案例

在Linux内核文档的documentation/input下,有一个input-programming.txt文件,讲解了编写输入设备驱动程序的核心步骤。

提供的案例代码描述了一个button设备,产生的事件通过BUTTON_PORT引脚获取,当有按下/释放发生时,BUTTON_IRQ被触发,以下是驱动的源代码:

  1. #include
  2. #include
  3. #include
  4. #include
  5. #include
  6. static struct input_dev *button_dev;
  7. static void button_interrupt(int irq, void*dummy, struct pt_regs *fp)
  8. {
  9. input_report_key(button_dev, BTN_1, inb(BUTTON_PORT) & 1);
  10. input_sync(button_dev);
  11. }
  12. static int __init button_init(void)
  13. {
  14. int error;
  15. if (request_irq(BUTTON_IRQ, button_interrupt, 0, "button",NULL)) {
  16. printk(KERN_ERR"button.c: Can't allocate irq %d\n", button_irq);
  17. return -EBUSY;
  18. }
  19. button_dev = input_allocate_device();
  20. if (!button_dev) {
  21. printk(KERN_ERR"button.c: Not enough memory\n");
  22. error = -ENOMEM;
  23. goto err_free_irq;
  24. }
  25. button_dev->evbit[0] = BIT(EV_KEY);
  26. button_dev->keybit[LONG(BTN_0)] = BIT(BTN_0);
  27. error = input_register_device(button_dev);
  28. if (error) {
  29. printk(KERN_ERR"button.c: Failed to register device\n");
  30. goto err_free_dev;
  31. }
  32. return 0;
  33. err_free_dev:
  34. input_free_device(button_dev);
  35. err_free_irq:
  36. free_irq(BUTTON_IRQ, button_interrupt);
  37. return error;
  38. }
  39. static void __exit button_exit(void)
  40. {
  41. input_unregister_device(button_dev);
  42. free_irq(BUTTON_IRQ, button_interrupt);
  43. }
  44. module_init(button_init);
  45. module_exit(button_exit);

编写基于输入子系统的设备驱动程序需要包含

button_init函数说明:

当模块加载(insmod)或内核引导过程中,button_init函数会被调用。首先做的工作是获取能够正确控制硬件设备的硬件资源(例如内存、IO内存、中断和DMA),在代码中BUTTON_IRQ作为BUTTON设备的中断资源,通过request_irq()函数被申请注册。当有按键按下/释放时,调用button_interrupt()中断处理函数获取按键值BUTTON_PORT(BUTTON设备的I/O资源)。

那么输入子系统怎么能够知道这个设备为输入设备呢?通过第8行为设备定义一个用于描述一个输入设备对象。

  1. static struct input_dev *button_dev;

定义了button_dev之后,如何通知输入子系统有新的输入设备了呢?或者说如何把一个新的输入设备加入到输入子系统中呢?可以通过输入子系统核心层input.c中提供的函数分配一个输入设备,在代码的第25行。

  1. button_dev= input_allocate_device();

有了输入设备的描述,当事件产生时,输入子系统怎么能够知道设备产生的事件类型呢?通过32和33行的代码。

  1. button_dev->evbit[0]= BIT(EV_KEY);
  2. button_dev->keybit[LONG(BTN_0)]= BIT(BTN_0);

其中evbit和keybit成员分别代表设备产生的事件类型和上报的按键值。其中输入子系统的一些位操作NBITS、BIT、LONG经常被用到:

  1. #defineNBITS(x) (((x)/BITS_PER_LONG)+1)                 //通过位x获取数组的长度
  2. #defineBIT(x)       (1UL<<((x)%BITS_PER_LONG))       //返回位x在数组中的位域
  3. #defineLONG(x) ((x)/BITS_PER_LONG)                        //返回位x的索引

以上的工作做完之后,即可注册为输入设备了,代码的35行。

  1. input_register_device(button_dev);

这个函数把button_dev输入设备挂入输入设备链表中,并且通知事件处理层调用connect函数完成设备和事件处理的绑定,当用户打开设备时,便能够调用到相应的事件处理接口获得硬件上报的数据了。input_register_device()函数是会睡眠的函数,因此不能够在中断上下文和持有自旋锁的代码中调用。

当我们把上面的工作做完之后,设备驱动中唯一值得关注的就是button_interrupt()中断处理函数了。当按键动作发生,button_interrupt()函数被调用,完成事件的上报由其中的两条语句完成。

  1. input_report_key(button_dev, BTN_1, inb(BUTTON_PORT) & 1);
  2. input_sync(button_dev);

其中input_report_key上报了这是一个按键事件,且它的值为inb(BUTTON_PORT) & 1,由于案例代码只产生一个按键的值,因此input_sync()在这里不起关键作用。但如果是一个触摸屏,即有x坐标和y坐标,则需要通过input_sync()函数把x和y坐标完整地传递给输入子系统。

driver: Linux设备模型之input子系统详解的更多相关文章

  1. driver: Linux设备模型之input子系统具体解释

    本节从总体上解说了输入子系统的框架结构.有助于读者从总体上认识linux的输入子系统.在陷入代码分析的过程中,通过本节的知识可以找准方向,明确原理. 本节重点: 输入子系统的框架结构 各层相应内核中的 ...

  2. Linux内核驱动学习(十)Input子系统详解

    文章目录 前言 框架 如何实现`input device` 设备驱动? 头文件 注册input_dev设备 上报按键值 dev->open()和dev->close() 其他事件类型,处理 ...

  3. linux input子系统详解

    首先,什么是linux的子系统: 输入子系统由驱动层.输入子系统核心.事件处理层三部分组成.一个输入事件,如鼠标移动通过Driver->Input core->Event handler- ...

  4. input子系统详解

    一.初识linux输入子系统 linux输入子系统(linux input subsystem)从上到下由三层实现,分别为:输入子系统事件处理层(EventHandler).输入子系统核心层(Inpu ...

  5. input子系统详解2

    上一节大概了解了输入子系统的流程 这一节认真追踪一下代码 input.c: input_init(void)函数 static int __init input_init(void) { int er ...

  6. Linux输入子系统详解

    input输入子系统框架  linux输入子系统(linux input subsystem)从上到下由三层实现,分别为:输入子系统事件处理层(EventHandler).输入子系统核心层(Input ...

  7. linux设备模型:扩展篇

    Linux设备模型组件:总线  一.定义:总线是不同IC器件之间相互通讯的通道;在计算机中,一个总线就是处理器与一个或多个不同外设之间的通讯通道;为了设备模型的目的,所有的设备都通过总线相互连接,甚至 ...

  8. 嵌入式Linux内核I2C子系统详解

    1.1 I2C总线知识 1.1.1  I2C总线物理拓扑结构     I2C总线在物理连接上非常简单,分别由SDA(串行数据线)和SCL(串行时钟线)及上拉电阻组成.通信原理是通过对SCL和SDA线高 ...

  9. Linux设备模型(总线、设备、驱动程序和类)

    Linux设备驱动程序学习(13) -Linux设备模型(总线.设备.驱动程序和类)[转] 文章的例子和实验使用<LDD3>所配的lddbus模块(稍作修改). 提示:在学习这部分内容是一 ...

随机推荐

  1. Spring boot 整合 Mybatis + Thymeleaf开发web(二)

    上一章我把整个后台的搭建和逻辑给写出来了,也贴的相应的代码,这章节就来看看怎么使用Thymeleaf模板引擎吧,Spring Boot默认推荐Thymeleaf模板,之前是用jsp来作为视图层的渲染, ...

  2. Go语言-通道类型

    通道(Channel)是Go语言中一种非常独特的数据结构.它可用于在不同Goroutine之间传递类型化的数据,并且是并发安全的.相比之下,我们之前介绍的那些数据类型都不是并发安全的.这一点需要特别注 ...

  3. 存出和载入Docker镜像

    存出镜像 如果要导出镜像到本地文件,可以使用 docker save 命令. $ sudo docker images REPOSITORY TAG IMAGE ID CREATED VIRTUAL ...

  4. Linux 虚存 linux2.6内核特性

    一.大型页面的支持 当代计算机体系结构大都支持多种页面大小,例如,IA-32体系结构支持4KB或4MB的页面, Linux操作系统只是将大型页面用于映射实际的内核映像.大型页面的使用主要是为了改进高性 ...

  5. Dynamics 365 Online 试用账号申请方式

    专人整理的申请方式PPT,这里转载给大家,下载地址

  6. Ubuntu 16.04 + ROS Kinetic 机器人操作系统学习镜像分享与使用安装说明

    Ubuntu 16.04 + ROS Kinetic 镜像分享与使用安装说明 内容概要:1 网盘文件介绍  2 镜像制作  3 系统使用与安装 ---- 祝ROS爱好者和开发者新年快乐:-) ---- ...

  7. 一例完全理解vue 2.0 的slots 和 functional render

    https://jsfiddle.net/pronan/mjqpmw0u/ 通过调节plan="bbb"的值, 比如换成plan="children",你会发现 ...

  8. 安卓高级5 传感器和震动 模仿微信摇一摇Ui效果

    效果图: 所用的Ui就三张图: 案例代码: 结构 MainActivity.java package com.example.myapp; import android.content.Intent; ...

  9. WebService案例入门(基础篇)

    [版权申明:本文系作者原创,转载请注明出处] 文章出处:http://blog.csdn.net/sdksdk0/article/details/52106690 作者:朱培 ID:sdksdk0 邮 ...

  10. ROS机器人程序设计(原书第2版)补充资料 (叁) 第三章 可视化和调试工具

    ROS机器人程序设计(原书第2版)补充资料 (叁) 第三章 可视化和调试工具 书中,大部分出现hydro的地方,直接替换为indigo或jade或kinetic,即可在对应版本中使用. ~$ rosl ...