【BZOJ1096】【ZJOI2007】仓库建设(斜率优化,动态规划)
【BZOJ1096】【ZJOI2007】仓库建设(斜率优化,动态规划)
题面
Description
L公司有N个工厂,由高到底分布在一座山上。如图所示,工厂1在山顶,工厂N在山脚。由于这座山处于高原内
陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用。突然有一天,L公司的总裁L先生接到气象
部门的电话,被告知三天之后将有一场暴雨,于是L先生决定紧急在某些工厂建立一些仓库以免产品被淋坏。由于
地形的不同,在不同工厂建立仓库的费用可能是不同的。第i个工厂目前已有成品Pi件,在第i个工厂位置建立仓库
的费用是Ci。对于没有建立仓库的工厂,其产品应被运往其他的仓库进行储藏,而由于L公司产品的对外销售处设
置在山脚的工厂N,故产品只能往山下运(即只能运往编号更大的工厂的仓库),当然运送产品也是需要费用的,
假设一件产品运送1个单位距离的费用是1。假设建立的仓库容量都都是足够大的,可以容下所有的产品。你将得到
以下数据:1:工厂i距离工厂1的距离Xi(其中X1=0);2:工厂i目前已有成品数量Pi;:3:在工厂i建立仓库的费用
Ci;请你帮助L公司寻找一个仓库建设的方案,使得总的费用(建造费用+运输费用)最小。
Input
第一行包含一个整数N,表示工厂的个数。接下来N行每行包含两个整数Xi, Pi, Ci, 意义如题中所述。
Output
仅包含一个整数,为可以找到最优方案的费用。
Sample Input
3
0 5 10
5 3 100
9 6 10
Sample Output
32
HINT
在工厂1和工厂3建立仓库,建立费用为10+10=20,运输费用为(9-5)3 = 12,总费用32。如果仅在工厂3建立仓库,建立费用为10,运输费用为(9-0)5+(9-5)*3=57,总费用67,不如前者优。
【数据规模】
对于100%的数据, N ≤1000000。 所有的Xi, Pi, Ci均在32位带符号整数以内,保证中间计算结果不超过64位带符号整数。
题解
很明显的斜率优化
先把暴力的\(O(n^{2})\)写出来
for(int i=1;i<=n;++i)
for(int j=0;j<i;++j)
f[i]=min(f[i],f[j]+C[i]+(s[i]-s[j])-1ll*(x[i]-x[j])*p[j]);
然后拆公式。。。
我好懒呀。。。这题不想写公式了(其实是比较长)
把上面的转移再设出来两个\(j,k\)比较转移即可
具体怎么搞看斜率优化
直接上代码把。。。
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
#define MAX 1001000
inline int read()
{
register int x=0,t=1;
register char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-'){t=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-48;ch=getchar();}
return x*t;
}
int n,x[MAX],p[MAX],C[MAX];
long long s[MAX],f[MAX],mm[MAX];
int h,t,Q[MAX];
double count(int j,int k)
{
return 1.0*((f[j]-mm[j])-(f[k]-mm[k]))/(p[j]-p[k]);
}
int main()
{
n=read();
for(int i=1;i<=n;++i)
x[i]=read(),p[i]=read(),C[i]=read();
for(int i=1;i<=n;++i)p[i]+=p[i-1];
for(int i=1;i<=n;++i)s[i]=s[i-1]+(x[i]-x[i-1])*1ll*p[i-1];
for(int i=1;i<=n;++i)mm[i]=s[i]-1ll*x[i]*p[i];
for(int i=1;i<=n;++i)f[i]=1e18;
/*
for(int i=1;i<=n;++i)
for(int j=0;j<i;++j)
f[i]=min(f[i],f[j]+C[i]+(s[i]-s[j])-1ll*(x[i]-x[j])*p[j]);
*/
for(int i=1;i<=n;++i)
{
while(h<t&&count(Q[h],Q[h+1])<=x[i])h++;
int j=Q[h];
f[i]=f[j]+C[i]+(s[i]-s[j])-1ll*(x[i]-x[j])*p[j];
while(h<t&&count(Q[t-1],Q[t])>=count(Q[t-1],i))t--;
Q[++t]=i;
}
printf("%lld\n",f[n]);
return 0;
}
【BZOJ1096】【ZJOI2007】仓库建设(斜率优化,动态规划)的更多相关文章
- bzoj1096[ZJOI2007]仓库建设 斜率优化dp
1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 5482 Solved: 2448[Submit][Stat ...
- [BZOJ1096] [ZJOI2007] 仓库建设 (斜率优化)
Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用.突然有一天, ...
- BZOJ1096 [ZJOI2007]仓库建设——斜率优化
方程: $\Large f(i)=min(f(j)+\sum\limits_{k=j+1}^{i}(x_i-x_k)*p_k)+c_i$ 显然这样的方程复杂度为$O(n^3)$极限爆炸,所以我们要换一 ...
- 【BZOJ1096】[ZJOI2007]仓库建设 斜率优化
[BZOJ1096][ZJOI2007]仓库建设 Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L公司 ...
- bzoj-1096 1096: [ZJOI2007]仓库建设(斜率优化dp)
题目链接: 1096: [ZJOI2007]仓库建设 Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L ...
- BZOJ 1096: [ZJOI2007]仓库建设 [斜率优化DP]
1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 4201 Solved: 1851[Submit][Stat ...
- 【BZOJ-1096】仓库建设 斜率优化DP
1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3719 Solved: 1633[Submit][Stat ...
- 【bzoj1096】[ZJOI2007]仓库建设 斜率优化dp
题目描述 L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用.突然有一天,L公司的总裁L ...
- P2120 [ZJOI2007]仓库建设 斜率优化dp
好题,这题是我理解的第一道斜率优化dp,自然要写一发题解.首先我们要写出普通的表达式,然后先用前缀和优化.然后呢?我们观察发现,x[i]是递增,而我们发现的斜率也是需要是递增的,然后就维护一个单调递增 ...
- 洛谷P2120 [ZJOI2007]仓库建设 斜率优化DP
做的第一道斜率优化\(DP\)QwQ 原题链接1/原题链接2 首先考虑\(O(n^2)\)的做法:设\(f[i]\)表示在\(i\)处建仓库的最小费用,则有转移方程: \(f[i]=min\{f[j] ...
随机推荐
- LeetCode - 596. Classes More Than 5 Students
There is a table courses with columns: student and class Please list out all classes which have more ...
- 配置Nginx代理服务器
nginx另一个使用的比较多的情况是作为代理服务器,代理服务器接收请求,然后把请求传递到代理服务器,nginx最后会提取代理服务器的回复,并把这些回复发送给客户端.我们将配置一个基本的代理服务器,图片 ...
- [Poj3128]Leonardo's Notebook
[Poj3128]Leonardo's Notebook 标签: 置换 题目链接 题意 给你一个置换\(B\),让你判断是否有一个置换\(A\)使得\(B=A^2\). 题解 置换可以写成循环的形式, ...
- hexo博客简易搭建教程
什么是Hexo Hexo 是一个快速.简洁且高效的博客框架.Hexo 使用 Markdown(或其他渲染引擎)解析文章,在几秒内,即可利用靓丽的主题生成静态网页.官网 Hexo安装 安装 在安装Hex ...
- Servlet3.0+springmvc5+log4j2正确的开启姿势(WebLookUp)
前言 java社区占据市场份额比较大的日志组件由log4j 1.×,到logback,再到整合后的升级版 log4j 2.×,有网友测试后据说log4j2的性能最NB.于是开始往自己的springmv ...
- c++ 回调函数使用
普通回调 #include<stdio.h> void printWelcome(int len) { printf("welcome -- %d\n", len); ...
- SVN高级
#查找有关svn关键字的目录及文件 find / -name "*svn*" find / -name "*Svn*" find / -name "* ...
- 关于在windows10中的vmware9.0里面安装的ubuntukylin15.04和windows共享目录的一些反思
关于在windows10中的vmware9.0里面安装的ubuntukylin15.04和windows共享目录的一些反思 一.遇到的问题 如题目所说,在windows的虚拟机中和windo ...
- java网络编程(6)——实现一个服务器把小写转大写
实现一个服务器,通过我们发送的文本数据,然后转回大写放回,实现一个服务端与客户端的交互,用over来作为结束标记,具体代码如下: 客户端: package com.seven.tcp; import ...
- 吾八哥学Selenium(三):操作复选框checkbox/单选框radio的方法
复选框checkbox和单选框radio是web网站里经常会使用到的两个控件,那么在web自动化测试的时候如何利用Selenium来操作这俩控件呢?今天我们就来简单入门练习一下! html测试页面代码 ...