题解:YNOI/GZOI2019 与或和
题目大意:
1. 求所有的子矩阵的and之和
2. 求所有子矩阵的or之和由于是位运算,那么久直接拆位,于是就变成了求全0子矩阵的个数和全1子矩阵的个数
那么题目就变成了简单的单调栈问题
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<vector>
#include<queue>
using namespace std; #define re register
#define ll long long
#define gc getchar()
inline int read()
{
re int x(0),f(1);re char c(gc);
while(c>'9'||c<'0')f=c=='-'?-1:1,c=gc;
while(c>='0'&&c<='9')x=x*10+c-48,c=gc;
return f*x;
} const int N=1010,mod=1e9+7;
int n,a[N][N],h[N][N],top,s[N];
ll ans; int main()
{
n=read();
for(int i=1;i<=n;++i)
for(int j=1;j<=n;++j)
a[i][j]=read();
for(int k=0;k<=31;++k)
{
for(int i=1;i<=n;++i)
for(int j=1;j<=n;++j)
{
if((a[i][j]>>k)&1)
h[i][j]=h[i-1][j]+1;
else
h[i][j]=0;
}
for(int i=1;i<=n;++i)
{
ll an(0);top=0;
for(int j=1;j<=n;++j)
{
an+=h[i][j];
while(top&&h[i][s[top]]>=h[i][j])
an-=(s[top]-s[top-1])*(h[i][s[top--]]-h[i][j]);
ans+=an<<k;
ans%=mod;
s[++top]=j;
}
}
}
cout<<ans<<" ";
ans=0,top=0;
memset(s,0,sizeof(s));
for(int k=0;k<=31;++k)
{
for(int i=1;i<=n;++i)
for(int j=1;j<=n;++j)
{
if((a[i][j]>>k)&1)
h[i][j]=0;
else
h[i][j]=h[i-1][j]+1;
}
for(int i=1;i<=n;++i)
{
ll an(0);top=0;
for(int j=1;j<=n;++j)
{
an+=h[i][j];
while(top&&h[i][s[top]]>=h[i][j])
an-=(s[top]-s[top-1])*(h[i][s[top--]]-h[i][j]);
ans+=(1LL*i*j-an)<<k;
ans%=mod;
s[++top]=j;
}
}
}
cout<<ans<<" ";
return 0;
}
题解:YNOI/GZOI2019 与或和的更多相关文章
- 题解:[GXOI/GZOI2019]与或和
开始完全没思路 在洛谷看到样例一,突发奇想,决定先做一下元素只有0/1的情况 发现子任务1是全1子矩阵 子任务2是总子矩阵个数减去全0子矩阵 发现全0/1矩阵可以构造单调栈解决.具体做法:前缀和求出每 ...
- 题解-GXOI/GZOI2019 特技飞行
Problem loj3085 bzoj不放题面差评 题意概要:给出两条竖直直线,再给出 \(n\) 架飞机的初始航线:一条接通这两条直线的线段,保证航线交点不在两条直线上.现要求安排所有飞机在航线相 ...
- GXOI/GZOI2019题解
GXOI/GZOI2019题解 P5300 [GXOI/GZOI2019]与或和 一眼题.. 显然枚举每个二进制位,答案就变成了全1子矩阵数量. 这个xjb推推,单调栈一下就行了. #include& ...
- 「GXOI / GZOI2019」简要题解
「GXOI / GZOI2019」简要题解 LOJ#3083. 「GXOI / GZOI2019」与或和 https://loj.ac/problem/3083 题意:求一个矩阵的所有子矩阵的与和 和 ...
- 洛谷P5309 Ynoi 2011 初始化 题解
题面. 我也想过根号分治,但是题目刷得少,数组不敢开,所以还是看题解做的. 这道题目要用到根号分治的思想,可以看看这道题目和我的题解. 题目要求处理一个数组a,支持如下操作. 对一个整数x,对数组长度 ...
- 题解 P5301 【[GXOI/GZOI2019]宝牌一大堆】
这道题除了非常恶心以外也没有什么非常让人恶心的地方 当然一定要说有的话还是有的,就是这题和咱 ZJOI 的 mahjong 真的是好像的说~ 于是就想说这道题出题人应该被 锕 掉 noteskey 整 ...
- 【题解】Luogu P5301 [GXOI/GZOI2019]宝牌一大堆
原题传送门 首先先要学会麻将,然后会发现就是一个暴力dp,分三种情况考虑: 1.非七对子国士无双,设\(dp_{i,j,k,a,b}\)表示看到了第\(i\)种牌,一共有\(j\)个\(i-1\)开头 ...
- 【题解】Luogu P5300 [GXOI/GZOI2019]与或和
原题传送门 我们珂以拆位,拆成一个个0/1矩阵 贡献珂以用全0,全1的子矩阵的个数来计算 全0,全1的子矩阵的个数珂以用悬线法/单调栈解决 #include <bits/stdc++.h> ...
- 【题解】Luogu P5304 [GXOI/GZOI2019]旅行者
原题传送门 题意:给你k个点,让你求两两最短路之间的最小值 我们考虑二进制拆分,使得每两个点都有机会分在不同的组\((A:0,B:1)\)中,从源点\(S\)向\(A/B\)中的点连边权为0的边,从\ ...
随机推荐
- C# 曲线上的点(二) 获取距离最近的点
如何在一条曲线上,获取到距离指定点最近的点位置? 与上一篇 C# 曲线上的点(一) 获取指定横坐标对应的纵坐标值 类似, 我们通过曲线上获取的密集点,通过俩点之间连线,获取连线上最近的点.我们能够获取 ...
- C# 把字符串类型日期转换为日期类型(转载)
C# 把字符串类型日期转换为日期类型 来源:https://www.cnblogs.com/raincedar/p/7009243.html 方法一:Convert.ToDateTime(stri ...
- 【Springboot】Springboot整合Thymeleaf模板引擎
Thymeleaf Thymeleaf是跟Velocity.FreeMarker类似的模板引擎,它可以完全替代JSP,相较与其他的模板引擎,它主要有以下几个特点: 1. Thymeleaf在有网络和无 ...
- 六大设计原则(四)ISP接口隔离原则(上)
ISP的定义 首先明确接口定义 实例接口 我们在Java中,一个类用New关键字来创建一个实例.抛开Java语言我们其实也可以称为接口.假设Person zhangsan = new Person() ...
- 编程心法 之什么是MVP What is MVP development?
Minimal Value product(feather), 比如说,如果是一个新的Photoshop,那么增加图片亮度就是一个MVP. 想要看到更多玮哥的学习笔记.考试复习资料.面试准备资料?想要 ...
- WebGL或OpenGL关于模型视图投影变换的设置技巧
目录 1. 具体实例 2. 解决方案 1) Cube.html 2) Cube.js 3) 运行结果 3. 详细讲解 1) 模型变换 2) 视图变换 3) 投影变换 4) 模型视图投影矩阵 4. 存在 ...
- Intel MKL FATAL ERROR: Cannot load mkl_intel_thread.dll
Intel MKL FATAL ERROR: Cannot load mkl_intel_thread.dll 在使用Anaconda创建一个虚拟环境出来,然后安装了scikit-learn.nump ...
- Android串口通讯
今天在整一个项目,需要利用串口通讯在网上看了好多人的帖子才稍微整出了一点头绪. 首先串口代码就是利用谷歌自己的api,将java代码放在java/android_serialport_api目录下,如 ...
- python xlrd 读取excel.md
文章链接:https://mp.weixin.qq.com/s/fojkVO-AB2cCu7FtDtPBjw 之前的文章介绍过关于写入excel表格的方法,近期自己在做一个网站,涉及到读取excel, ...
- 自学MongoDB(1)
MongoDB是nosql(非关系型数据库)中的一种,面向文档的数据库,介于传统的结构化数据库(关系型数据库)与非关系型数据库(文件储存)之间的一种,具有数据结构非常松散和非常灵活的特点;常用于存储分 ...