The Doors
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 8334   Accepted: 3218

Description

You are to find the length of the shortest path through a chamber containing obstructing walls. The chamber will always have sides at x = 0, x = 10, y = 0, and y = 10. The initial and final points of the path are always (0, 5) and (10, 5). There will also be from 0 to 18 vertical walls inside the chamber, each with two doorways. The figure below illustrates such a chamber and also shows the path of minimal length. 

Input

The input data for the illustrated chamber would appear as follows.


4 2 7 8 9 
7 3 4.5 6 7

The first line contains the number of interior walls. Then there is a line for each such wall, containing five real numbers. The first number is the x coordinate of the wall (0 < x < 10), and the remaining four are the y coordinates of the ends of the doorways in that wall. The x coordinates of the walls are in increasing order, and within each line the y coordinates are in increasing order. The input file will contain at least one such set of data. The end of the data comes when the number of walls is -1.

Output

The output should contain one line of output for each chamber. The line should contain the minimal path length rounded to two decimal places past the decimal point, and always showing the two decimal places past the decimal point. The line should contain no blanks.

Sample Input

1
5 4 6 7 8
2
4 2 7 8 9
7 3 4.5 6 7
-1

Sample Output

10.00
10.06

Source


题意:从(0,5)走到(10,5)最短路

我太傻逼了,查了好长时间计算几何的错,结果是求DAG的DP忘清空vis了
 
线段相交做两个直线与线段相交就行了
注意本题一个端点在另一条线上不能算相交哦
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <vector>
using namespace std;
typedef long long ll;
const int N=,M=1e4+;
const double INF=1e9;
const double eps=1e-;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-; c=getchar();}
while(c>=''&&c<=''){x=x*+c-''; c=getchar();}
return x*f;
}
inline int sgn(double x){
if(abs(x)<eps) return ;
else return x<?-:;
}
struct Vector{
double x,y;
Vector(double a=,double b=):x(a),y(b){}
bool operator <(const Vector &a)const{
return x<a.x||(x==a.x&&y<a.y);
}
void print(){
printf("%lf %lf\n",x,y);
}
};
typedef Vector Point;
Vector operator +(Vector a,Vector b){return Vector(a.x+b.x,a.y+b.y);}
Vector operator -(Vector a,Vector b){return Vector(a.x-b.x,a.y-b.y);}
Vector operator *(Vector a,double b){return Vector(a.x*b,a.y*b);}
Vector operator /(Vector a,double b){return Vector(a.x/b,a.y/b);}
bool operator ==(Vector a,Vector b){return sgn(a.x-b.x)==&&sgn(a.y-b.y)==;} double Cross(Vector a,Vector b){
return a.x*b.y-a.y*b.x;
}
double DisPP(Point a,Point b){
Point t=a-b;
return sqrt(t.x*t.x+t.y*t.y);
}
struct Line{
Point s,t;
Line(){}
Line(Point p,Point v):s(p),t(v){}
}l[N];
int cl;
bool isLSI(Line l1,Line l2){
Vector v=l1.t-l1.s,u=l2.s-l1.s,w=l2.t-l1.s;
return sgn(Cross(v,u))!=sgn(Cross(v,w))&&sgn(Cross(v,u))!=&&sgn(Cross(v,w))!=;
}
bool isSSI(Line l1,Line l2){
return isLSI(l1,l2)&&isLSI(l2,l1);
}
bool can(Point a,Point b){
Line line(a,b);
for(int i=;i<=cl;i++)
if(isSSI(l[i],line)) return false;
return true;
} int n,s,t;
struct edge{
int v,ne;
double w;
}e[M<<];
int h[N],cnt=;
inline void ins(int u,int v,double w){//printf("ins %d %d %lf\n",u,v,w);
cnt++;
e[cnt].v=v;e[cnt].w=w;e[cnt].ne=h[u];h[u]=cnt;
}
double d[N];
int vis[N]; double dp(int u){
if(vis[u]) return d[u];
vis[u]=;
for(int i=h[u];i;i=e[i].ne){
int v=e[i].v;
d[u]=min(d[u],dp(v)+e[i].w);
}
return d[u];
}
void DAG(){
for(int i=s;i<=t;i++) d[i]=INF;
memset(vis,,sizeof(vis));
d[t]=;vis[t]=;
dp(s);
} Point p[N][];
Point S(,),T(,);
inline int idx(int u){return u%==?u/:u/+;}
inline int idy(int u){return u%==?:u%;}
double x;
int main(int argc, const char * argv[]) {
while(true){
n=read();s=;t=*n+;
if(n==-) break;
cnt=;memset(h,,sizeof(h));
cl=; for(int i=;i<=n;i++){
scanf("%lf%lf%lf%lf%lf",&x,&p[i][].y,&p[i][].y,&p[i][].y,&p[i][].y);
p[i][].x=p[i][].x=p[i][].x=p[i][].x=x;
int num=(i-)*;
//for(int j=1;j<=4;j++) p[i][j].print();
if(i==){
for(int j=;j<=;j++)
ins(s,num+j,DisPP(S,p[i][j]));
}else{
for(int j=;j<=;j++){
for(int u=;u<=num;u++){
if(can(p[idx(u)][idy(u)],p[i][j]))
ins(u,num+j,DisPP(p[idx(u)][idy(u)],p[i][j]));
}
if(can(S,p[i][j])) ins(s,num+j,DisPP(S,p[i][j]));
}
}
l[++cl]=Line(Point(x,),p[i][]);
l[++cl]=Line(p[i][],p[i][]);
l[++cl]=Line(p[i][],Point(x,));
}
int num=n*;
for(int u=;u<=num;u++)
if(can(p[idx(u)][idy(u)],T))
ins(u,t,DisPP(p[idx(u)][idy(u)],T));
if(can(S,T)) {puts("10.00");continue;}
DAG();
printf("%.2f\n",d[s]);
} return ;
}
 

POJ1556 The Doors [线段相交 DP]的更多相关文章

  1. POJ1556 最短路 + 线段相交问题

    POJ1556 题目大意:比较明显的题目,在一个房间中有几堵墙,直着走,问你从(0,5)到(10,5)的最短路是多少 求最短路问题,唯一变化的就是边的获取,需要我们获取边,这就需要判断我们想要走的这条 ...

  2. POJ 1556 - The Doors 线段相交不含端点

    POJ 1556 - The Doors题意:    在 10x10 的空间里有很多垂直的墙,不能穿墙,问你从(0,5) 到 (10,5)的最短距离是多少.    分析:        要么直达,要么 ...

  3. POJ 1556 The Doors【最短路+线段相交】

    思路:暴力判断每个点连成的线段是否被墙挡住,构建图.求最短路. 思路很简单,但是实现比较复杂,模版一定要可靠. #include<stdio.h> #include<string.h ...

  4. 简单几何(线段相交+最短路) POJ 1556 The Doors

    题目传送门 题意:从(0, 5)走到(10, 5),中间有一些门,走的路是直线,问最短的距离 分析:关键是建图,可以保存所有的点,两点连通的条件是线段和中间的线段都不相交,建立有向图,然后用Dijks ...

  5. POJ 1066 Treasure Hunt (线段相交)

    题意:给你一个100*100的正方形,再给你n条线(墙),保证线段一定在正方形内且端点在正方形边界(外墙),最后给你一个正方形内的点(保证不再墙上) 告诉你墙之间(包括外墙)围成了一些小房间,在小房间 ...

  6. 简单几何(线段相交) POJ 1066 Treasure Hunt

    题目传送门 题意:从四面任意点出发,有若干障碍门,问最少要轰掉几扇门才能到达终点 分析:枚举入口点,也就是线段的两个端点,然后选取与其他线段相交点数最少的 + 1就是答案.特判一下n == 0的时候 ...

  7. poj 1066 线段相交

    链接:http://poj.org/problem?id=1066 Treasure Hunt Time Limit: 1000MS   Memory Limit: 10000K Total Subm ...

  8. POJ 1066 Treasure Hunt(线段相交判断)

    Treasure Hunt Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 4797   Accepted: 1998 Des ...

  9. 线段相交 poj 1066

    // 线段相交 poj 1066 // 思路:直接枚举每个端点和终点连成线段,判断和剩下的线段相交个数 // #include <bits/stdc++.h> #include <i ...

随机推荐

  1. python云算法

    http://www.runoob.com/python3/python3-basic-operators.html 本章节主要说明Python的运算符.举个简单的例子 4 +5 = 9 . 例子中, ...

  2. cesium编程入门(五)绘制形状

    通过Entity添加形状 先来看一个添加立方体的例子 var viewer = new Cesium.Viewer('cesiumContainer'); var redBox = **viewer. ...

  3. HDU 5914 Triangle(打表——斐波那契数的应用)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5914 Problem Description Mr. Frog has n sticks, whos ...

  4. boostrap ajax表单验证提交

    =============================================================================== 1. 1 <link href=& ...

  5. ecshop商城_

    一.Ecshop简介: ECShop是Comsenz公司推出的一款B2C独立网店系统,适合企业及个人快速构建个性化网上商店.系统是基于PHP语言及MYSQL数据库构架开发的跨平台开源程序. ECSho ...

  6. [机器学习]模型评价参数,准确率,召回率,F1-score

    很久很久以前,我还是有个建筑梦的大二少年,有一天,讲图的老师看了眼我的设计图,说:"我觉得你这个设计做得很紧张".当时我就崩溃,对紧张不紧张这样的评价标准理解无能.多年后我终于明白 ...

  7. RMQ算法 (ST算法)

     概述: RMQ(Range Minimum/Maximum Query),即区间最值查询,是指这样一个问题:对于长度为n的数列A,回答若干询问RMQ(A,i,j)(i,j<=n),返回数列A中 ...

  8. CCF系列之模板生成系统( 201509-3 )

    试题名称: 模板生成系统 试题编号: 201509-3 时间限制: 1.0s 内存限制: 256.0MB 问题描述 成成最近在搭建一个网站,其中一些页面的部分内容来自数据库中不同的数据记录,但是页面的 ...

  9. 用Express、MySQL搭建项目(接口以及静态文件获取、文件上传等)

    一.简介 本文将主要基于node.js使用express框架搭建一个后台环境,包括如何自定义项目目录.所用依赖以及中间件.路由以及模板引擎.接口数据获取以及文件上传等内容. 二.后台环境搭建 1.新建 ...

  10. python_怎么格式化字符串?

    案例: 如何对下面字典的key左对齐 {'dhqbl': 30, 'psfgj': 40, 'ontpqsb': 90, 'mrean': 110, 'klespjtr': 60, 'lprnkqhb ...