The Doors
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 8334   Accepted: 3218

Description

You are to find the length of the shortest path through a chamber containing obstructing walls. The chamber will always have sides at x = 0, x = 10, y = 0, and y = 10. The initial and final points of the path are always (0, 5) and (10, 5). There will also be from 0 to 18 vertical walls inside the chamber, each with two doorways. The figure below illustrates such a chamber and also shows the path of minimal length. 

Input

The input data for the illustrated chamber would appear as follows.


4 2 7 8 9 
7 3 4.5 6 7

The first line contains the number of interior walls. Then there is a line for each such wall, containing five real numbers. The first number is the x coordinate of the wall (0 < x < 10), and the remaining four are the y coordinates of the ends of the doorways in that wall. The x coordinates of the walls are in increasing order, and within each line the y coordinates are in increasing order. The input file will contain at least one such set of data. The end of the data comes when the number of walls is -1.

Output

The output should contain one line of output for each chamber. The line should contain the minimal path length rounded to two decimal places past the decimal point, and always showing the two decimal places past the decimal point. The line should contain no blanks.

Sample Input

1
5 4 6 7 8
2
4 2 7 8 9
7 3 4.5 6 7
-1

Sample Output

10.00
10.06

Source


题意:从(0,5)走到(10,5)最短路

我太傻逼了,查了好长时间计算几何的错,结果是求DAG的DP忘清空vis了
 
线段相交做两个直线与线段相交就行了
注意本题一个端点在另一条线上不能算相交哦
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <vector>
using namespace std;
typedef long long ll;
const int N=,M=1e4+;
const double INF=1e9;
const double eps=1e-;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-; c=getchar();}
while(c>=''&&c<=''){x=x*+c-''; c=getchar();}
return x*f;
}
inline int sgn(double x){
if(abs(x)<eps) return ;
else return x<?-:;
}
struct Vector{
double x,y;
Vector(double a=,double b=):x(a),y(b){}
bool operator <(const Vector &a)const{
return x<a.x||(x==a.x&&y<a.y);
}
void print(){
printf("%lf %lf\n",x,y);
}
};
typedef Vector Point;
Vector operator +(Vector a,Vector b){return Vector(a.x+b.x,a.y+b.y);}
Vector operator -(Vector a,Vector b){return Vector(a.x-b.x,a.y-b.y);}
Vector operator *(Vector a,double b){return Vector(a.x*b,a.y*b);}
Vector operator /(Vector a,double b){return Vector(a.x/b,a.y/b);}
bool operator ==(Vector a,Vector b){return sgn(a.x-b.x)==&&sgn(a.y-b.y)==;} double Cross(Vector a,Vector b){
return a.x*b.y-a.y*b.x;
}
double DisPP(Point a,Point b){
Point t=a-b;
return sqrt(t.x*t.x+t.y*t.y);
}
struct Line{
Point s,t;
Line(){}
Line(Point p,Point v):s(p),t(v){}
}l[N];
int cl;
bool isLSI(Line l1,Line l2){
Vector v=l1.t-l1.s,u=l2.s-l1.s,w=l2.t-l1.s;
return sgn(Cross(v,u))!=sgn(Cross(v,w))&&sgn(Cross(v,u))!=&&sgn(Cross(v,w))!=;
}
bool isSSI(Line l1,Line l2){
return isLSI(l1,l2)&&isLSI(l2,l1);
}
bool can(Point a,Point b){
Line line(a,b);
for(int i=;i<=cl;i++)
if(isSSI(l[i],line)) return false;
return true;
} int n,s,t;
struct edge{
int v,ne;
double w;
}e[M<<];
int h[N],cnt=;
inline void ins(int u,int v,double w){//printf("ins %d %d %lf\n",u,v,w);
cnt++;
e[cnt].v=v;e[cnt].w=w;e[cnt].ne=h[u];h[u]=cnt;
}
double d[N];
int vis[N]; double dp(int u){
if(vis[u]) return d[u];
vis[u]=;
for(int i=h[u];i;i=e[i].ne){
int v=e[i].v;
d[u]=min(d[u],dp(v)+e[i].w);
}
return d[u];
}
void DAG(){
for(int i=s;i<=t;i++) d[i]=INF;
memset(vis,,sizeof(vis));
d[t]=;vis[t]=;
dp(s);
} Point p[N][];
Point S(,),T(,);
inline int idx(int u){return u%==?u/:u/+;}
inline int idy(int u){return u%==?:u%;}
double x;
int main(int argc, const char * argv[]) {
while(true){
n=read();s=;t=*n+;
if(n==-) break;
cnt=;memset(h,,sizeof(h));
cl=; for(int i=;i<=n;i++){
scanf("%lf%lf%lf%lf%lf",&x,&p[i][].y,&p[i][].y,&p[i][].y,&p[i][].y);
p[i][].x=p[i][].x=p[i][].x=p[i][].x=x;
int num=(i-)*;
//for(int j=1;j<=4;j++) p[i][j].print();
if(i==){
for(int j=;j<=;j++)
ins(s,num+j,DisPP(S,p[i][j]));
}else{
for(int j=;j<=;j++){
for(int u=;u<=num;u++){
if(can(p[idx(u)][idy(u)],p[i][j]))
ins(u,num+j,DisPP(p[idx(u)][idy(u)],p[i][j]));
}
if(can(S,p[i][j])) ins(s,num+j,DisPP(S,p[i][j]));
}
}
l[++cl]=Line(Point(x,),p[i][]);
l[++cl]=Line(p[i][],p[i][]);
l[++cl]=Line(p[i][],Point(x,));
}
int num=n*;
for(int u=;u<=num;u++)
if(can(p[idx(u)][idy(u)],T))
ins(u,t,DisPP(p[idx(u)][idy(u)],T));
if(can(S,T)) {puts("10.00");continue;}
DAG();
printf("%.2f\n",d[s]);
} return ;
}
 

POJ1556 The Doors [线段相交 DP]的更多相关文章

  1. POJ1556 最短路 + 线段相交问题

    POJ1556 题目大意:比较明显的题目,在一个房间中有几堵墙,直着走,问你从(0,5)到(10,5)的最短路是多少 求最短路问题,唯一变化的就是边的获取,需要我们获取边,这就需要判断我们想要走的这条 ...

  2. POJ 1556 - The Doors 线段相交不含端点

    POJ 1556 - The Doors题意:    在 10x10 的空间里有很多垂直的墙,不能穿墙,问你从(0,5) 到 (10,5)的最短距离是多少.    分析:        要么直达,要么 ...

  3. POJ 1556 The Doors【最短路+线段相交】

    思路:暴力判断每个点连成的线段是否被墙挡住,构建图.求最短路. 思路很简单,但是实现比较复杂,模版一定要可靠. #include<stdio.h> #include<string.h ...

  4. 简单几何(线段相交+最短路) POJ 1556 The Doors

    题目传送门 题意:从(0, 5)走到(10, 5),中间有一些门,走的路是直线,问最短的距离 分析:关键是建图,可以保存所有的点,两点连通的条件是线段和中间的线段都不相交,建立有向图,然后用Dijks ...

  5. POJ 1066 Treasure Hunt (线段相交)

    题意:给你一个100*100的正方形,再给你n条线(墙),保证线段一定在正方形内且端点在正方形边界(外墙),最后给你一个正方形内的点(保证不再墙上) 告诉你墙之间(包括外墙)围成了一些小房间,在小房间 ...

  6. 简单几何(线段相交) POJ 1066 Treasure Hunt

    题目传送门 题意:从四面任意点出发,有若干障碍门,问最少要轰掉几扇门才能到达终点 分析:枚举入口点,也就是线段的两个端点,然后选取与其他线段相交点数最少的 + 1就是答案.特判一下n == 0的时候 ...

  7. poj 1066 线段相交

    链接:http://poj.org/problem?id=1066 Treasure Hunt Time Limit: 1000MS   Memory Limit: 10000K Total Subm ...

  8. POJ 1066 Treasure Hunt(线段相交判断)

    Treasure Hunt Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 4797   Accepted: 1998 Des ...

  9. 线段相交 poj 1066

    // 线段相交 poj 1066 // 思路:直接枚举每个端点和终点连成线段,判断和剩下的线段相交个数 // #include <bits/stdc++.h> #include <i ...

随机推荐

  1. 了解 Python 语言中的时间处理

    python 语言对于时间的处理继承了 C语言的传统,时间值是以秒为单位的浮点数,记录的是从1970年1月1日零点到现在的秒数,这个秒数可以转换成我们日常可阅读形式的日期和时间:我们下面首先来看一下p ...

  2. Tomcat配置虚拟路径访问容器外的硬盘资源

    问题: 如果tomcat中上传了很多的图片,会导致tomcat启动的时候会慢,所以应该把图片上传到tomcat容器外部 那么,问题来了: tomcat出于安全考虑,禁止了直接访问外部硬盘资源. 解决: ...

  3. 阿里云邮件服务器怎么设置才能在QQ邮箱访问,互发邮件?

    必须要在阿里云邮上打开IMAP和SMTP IMAP能够代发代收.在线更改.垃圾拦截,比POP3好: 记住打开的协议号: IMAP:143 带SSL:993 SMTP: 25 带SSL:465 前提是能 ...

  4. 用Dedecms5.7的arclist标签调用文章内容

    arclist标签调用文章内容 首先大家都知道在Dedecms中,list标签是可以调用文章内容的,调用格式就不再此冗述了.从我个人来说,我非常不喜欢用list标签调用,有可能我会尽量使用arclis ...

  5. 5.04 toArray()有一个问题须要解决一下

    把查询数据转为数组输出,这个toArray()方法是把对像转为数组输出,本身是没啥 问题.但是里面好像少写了一句判断:应先判断这个对像是否为空!如果为空则不转换直接输出空就行了吗,否则一个空值去转成数 ...

  6. 读懂 Deployment YAML - 每天5分钟玩转 Docker 容器技术(125)

    既然要用 YAML 配置文件部署应用,现在就很有必要了解一下 Deployment 的配置格式,其他 Controller(比如 DaemonSet)非常类似. 还是以 nginx-deploymen ...

  7. 关于Spring的69个面试题

    这篇文章总结了一些关于Spring框架的重要问题,这些问题都是你在面试或笔试过程中可能会被问到的.下次你再也不用担心你的面试了,Java Code Geeks这就帮你解答. 大多数你可能被问到的问题都 ...

  8. 用Express、MySQL搭建项目(接口以及静态文件获取、文件上传等)

    一.简介 本文将主要基于node.js使用express框架搭建一个后台环境,包括如何自定义项目目录.所用依赖以及中间件.路由以及模板引擎.接口数据获取以及文件上传等内容. 二.后台环境搭建 1.新建 ...

  9. docker 安装NexusRepository Manager

    今天学习了一下docker 感觉这东西要学习好多的命令,但是自己又是喜欢这种命令,感觉linux总是高一个等级的东西,这几天学习使用docker安装各种东西,下面记录一些我安装nexus的步骤,还是不 ...

  10. JSTL与EL的区别

    JSTL JSTL(JSP Standard Tag Library,JSP标准标签库)是一个不断完善的开放源代码的JSP标签库,是由apache的jakarta小组来维护的.JSTL只能运行在支持J ...