The Doors
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 8334   Accepted: 3218

Description

You are to find the length of the shortest path through a chamber containing obstructing walls. The chamber will always have sides at x = 0, x = 10, y = 0, and y = 10. The initial and final points of the path are always (0, 5) and (10, 5). There will also be from 0 to 18 vertical walls inside the chamber, each with two doorways. The figure below illustrates such a chamber and also shows the path of minimal length. 

Input

The input data for the illustrated chamber would appear as follows.


4 2 7 8 9 
7 3 4.5 6 7

The first line contains the number of interior walls. Then there is a line for each such wall, containing five real numbers. The first number is the x coordinate of the wall (0 < x < 10), and the remaining four are the y coordinates of the ends of the doorways in that wall. The x coordinates of the walls are in increasing order, and within each line the y coordinates are in increasing order. The input file will contain at least one such set of data. The end of the data comes when the number of walls is -1.

Output

The output should contain one line of output for each chamber. The line should contain the minimal path length rounded to two decimal places past the decimal point, and always showing the two decimal places past the decimal point. The line should contain no blanks.

Sample Input

1
5 4 6 7 8
2
4 2 7 8 9
7 3 4.5 6 7
-1

Sample Output

10.00
10.06

Source


题意:从(0,5)走到(10,5)最短路

我太傻逼了,查了好长时间计算几何的错,结果是求DAG的DP忘清空vis了
 
线段相交做两个直线与线段相交就行了
注意本题一个端点在另一条线上不能算相交哦
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <vector>
using namespace std;
typedef long long ll;
const int N=,M=1e4+;
const double INF=1e9;
const double eps=1e-;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-; c=getchar();}
while(c>=''&&c<=''){x=x*+c-''; c=getchar();}
return x*f;
}
inline int sgn(double x){
if(abs(x)<eps) return ;
else return x<?-:;
}
struct Vector{
double x,y;
Vector(double a=,double b=):x(a),y(b){}
bool operator <(const Vector &a)const{
return x<a.x||(x==a.x&&y<a.y);
}
void print(){
printf("%lf %lf\n",x,y);
}
};
typedef Vector Point;
Vector operator +(Vector a,Vector b){return Vector(a.x+b.x,a.y+b.y);}
Vector operator -(Vector a,Vector b){return Vector(a.x-b.x,a.y-b.y);}
Vector operator *(Vector a,double b){return Vector(a.x*b,a.y*b);}
Vector operator /(Vector a,double b){return Vector(a.x/b,a.y/b);}
bool operator ==(Vector a,Vector b){return sgn(a.x-b.x)==&&sgn(a.y-b.y)==;} double Cross(Vector a,Vector b){
return a.x*b.y-a.y*b.x;
}
double DisPP(Point a,Point b){
Point t=a-b;
return sqrt(t.x*t.x+t.y*t.y);
}
struct Line{
Point s,t;
Line(){}
Line(Point p,Point v):s(p),t(v){}
}l[N];
int cl;
bool isLSI(Line l1,Line l2){
Vector v=l1.t-l1.s,u=l2.s-l1.s,w=l2.t-l1.s;
return sgn(Cross(v,u))!=sgn(Cross(v,w))&&sgn(Cross(v,u))!=&&sgn(Cross(v,w))!=;
}
bool isSSI(Line l1,Line l2){
return isLSI(l1,l2)&&isLSI(l2,l1);
}
bool can(Point a,Point b){
Line line(a,b);
for(int i=;i<=cl;i++)
if(isSSI(l[i],line)) return false;
return true;
} int n,s,t;
struct edge{
int v,ne;
double w;
}e[M<<];
int h[N],cnt=;
inline void ins(int u,int v,double w){//printf("ins %d %d %lf\n",u,v,w);
cnt++;
e[cnt].v=v;e[cnt].w=w;e[cnt].ne=h[u];h[u]=cnt;
}
double d[N];
int vis[N]; double dp(int u){
if(vis[u]) return d[u];
vis[u]=;
for(int i=h[u];i;i=e[i].ne){
int v=e[i].v;
d[u]=min(d[u],dp(v)+e[i].w);
}
return d[u];
}
void DAG(){
for(int i=s;i<=t;i++) d[i]=INF;
memset(vis,,sizeof(vis));
d[t]=;vis[t]=;
dp(s);
} Point p[N][];
Point S(,),T(,);
inline int idx(int u){return u%==?u/:u/+;}
inline int idy(int u){return u%==?:u%;}
double x;
int main(int argc, const char * argv[]) {
while(true){
n=read();s=;t=*n+;
if(n==-) break;
cnt=;memset(h,,sizeof(h));
cl=; for(int i=;i<=n;i++){
scanf("%lf%lf%lf%lf%lf",&x,&p[i][].y,&p[i][].y,&p[i][].y,&p[i][].y);
p[i][].x=p[i][].x=p[i][].x=p[i][].x=x;
int num=(i-)*;
//for(int j=1;j<=4;j++) p[i][j].print();
if(i==){
for(int j=;j<=;j++)
ins(s,num+j,DisPP(S,p[i][j]));
}else{
for(int j=;j<=;j++){
for(int u=;u<=num;u++){
if(can(p[idx(u)][idy(u)],p[i][j]))
ins(u,num+j,DisPP(p[idx(u)][idy(u)],p[i][j]));
}
if(can(S,p[i][j])) ins(s,num+j,DisPP(S,p[i][j]));
}
}
l[++cl]=Line(Point(x,),p[i][]);
l[++cl]=Line(p[i][],p[i][]);
l[++cl]=Line(p[i][],Point(x,));
}
int num=n*;
for(int u=;u<=num;u++)
if(can(p[idx(u)][idy(u)],T))
ins(u,t,DisPP(p[idx(u)][idy(u)],T));
if(can(S,T)) {puts("10.00");continue;}
DAG();
printf("%.2f\n",d[s]);
} return ;
}
 

POJ1556 The Doors [线段相交 DP]的更多相关文章

  1. POJ1556 最短路 + 线段相交问题

    POJ1556 题目大意:比较明显的题目,在一个房间中有几堵墙,直着走,问你从(0,5)到(10,5)的最短路是多少 求最短路问题,唯一变化的就是边的获取,需要我们获取边,这就需要判断我们想要走的这条 ...

  2. POJ 1556 - The Doors 线段相交不含端点

    POJ 1556 - The Doors题意:    在 10x10 的空间里有很多垂直的墙,不能穿墙,问你从(0,5) 到 (10,5)的最短距离是多少.    分析:        要么直达,要么 ...

  3. POJ 1556 The Doors【最短路+线段相交】

    思路:暴力判断每个点连成的线段是否被墙挡住,构建图.求最短路. 思路很简单,但是实现比较复杂,模版一定要可靠. #include<stdio.h> #include<string.h ...

  4. 简单几何(线段相交+最短路) POJ 1556 The Doors

    题目传送门 题意:从(0, 5)走到(10, 5),中间有一些门,走的路是直线,问最短的距离 分析:关键是建图,可以保存所有的点,两点连通的条件是线段和中间的线段都不相交,建立有向图,然后用Dijks ...

  5. POJ 1066 Treasure Hunt (线段相交)

    题意:给你一个100*100的正方形,再给你n条线(墙),保证线段一定在正方形内且端点在正方形边界(外墙),最后给你一个正方形内的点(保证不再墙上) 告诉你墙之间(包括外墙)围成了一些小房间,在小房间 ...

  6. 简单几何(线段相交) POJ 1066 Treasure Hunt

    题目传送门 题意:从四面任意点出发,有若干障碍门,问最少要轰掉几扇门才能到达终点 分析:枚举入口点,也就是线段的两个端点,然后选取与其他线段相交点数最少的 + 1就是答案.特判一下n == 0的时候 ...

  7. poj 1066 线段相交

    链接:http://poj.org/problem?id=1066 Treasure Hunt Time Limit: 1000MS   Memory Limit: 10000K Total Subm ...

  8. POJ 1066 Treasure Hunt(线段相交判断)

    Treasure Hunt Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 4797   Accepted: 1998 Des ...

  9. 线段相交 poj 1066

    // 线段相交 poj 1066 // 思路:直接枚举每个端点和终点连成线段,判断和剩下的线段相交个数 // #include <bits/stdc++.h> #include <i ...

随机推荐

  1. javascript 对象-13

    对象 无序属性的集合,属性可以包含基本值.对象或者函数,简单理解为对象是若干属性的集合:我们常说的面向对象(oop)编程其实是指的一种编码的思想,简单理解为用对象来封装数据,利用封装.继承.多态对代码 ...

  2. 使用layui在规定的期限内选择日期

    这几天碰到了layui中的日期与时间这个,本以为很简单的,可是又一个需求是这样的,有两个日期选择框,第一个日期选择框要求最小日期不得小于当前日期,第二个日期选择框要求最小日期为第一个日期选择框的选中日 ...

  3. Rootkit 核心技术——利用 nt!_MDL(内存描述符链表)突破 SSDT(系统服务描述符表)的只读访问限制 Part I

    -------------------------------------------------------- 在 rootkit 与恶意软件开发中有一项基本需求,那就是 hook Windows ...

  4. Asp.net mvc 中的路由

    在 Asp.net mvc 中,来自客户端的请求总是针对某个 Controller 中的 Action 方法,因此,必须采用某种机制从请求的 URl 中解析出对应的 Controller 和 Acti ...

  5. 【开发技术】java+mysql 更改表字段的步骤

    1).首先通过SQL更改MYSQL库中的表结构(下面是一些例子) ALTER TABLE `illegalactivate` ADD `macethaddress` varchar(250)  NOT ...

  6. pthread_cond_wait的spurious wakeup问题

    最近在温习pthread的时候,忽然发现以前对pthread_cond_wait的了解太肤浅了.昨晚在看<Programming With POSIX Threads>的时候,看到了pth ...

  7. ETL工具--kettle篇(17.10.09更新)

    ETL是EXTRACT(抽取).TRANSFORM(转换).LOAD(加载)的简称,实现数据从多个异构数据源加载到数据库或其他目标地址,是数据仓库建设和维护中的重要一环也是工作量较大的一块.当前知道的 ...

  8. 第一个ServiceStack服务框架

    第一个ServiceStack服务框架 最近刚接触ServiceStack,就尝试着写了第一个服务框架,难免出错,还望同道们多多指正. 关于ServiceStack相关的概念不在做详细的叙述,网上研究 ...

  9. Spring的RestTemplata使用

    spring-web的RestTemplata是对java底层http的封装,使用RestTemplata用户可以不再关注底层的连接建立,并且RestTemplata不仅支持Rest规范,还可以定义返 ...

  10. 2017-07-08( bzip2 bunzip mount)

    .bz2 压缩格式  不能压缩目录 bzip2  源文件  (不保留源文件) bzip2 -k  源文件 (保留源文件) bzip2 -d  压缩文件名  (-k保留压缩文件) bunzip  压缩文 ...