BZOJ_1774_[Usaco2009 Dec]Toll 过路费_floyd

题意:

跟所有人一样,农夫约翰以着宁教我负天下牛,休叫天下牛负我的伟大精神,日日夜夜苦思生 财之道。为了发财,他设置了一系列的规章制度,使得任何一只奶牛在农场中的道路行走,都 要向农夫约翰上交过路费。 农场中由N(1 <= N <= 250)片草地(标号为1到N),并且有M(1 <= M <= 10000)条 双向道路连接草地A_j和B_j(1 <= A_j <= N; 1 <= B_j <= N)。

奶牛们从任意一片草 地出发可以抵达任意一片的草地。FJ已经在连接A_j和B_j的双向道路上设置一个过路费L_j (1 <= L_j <= 100,000)。 可能有多条道路连接相同的两片草地,但是不存在一条道路连接一片草地和这片草地本身。最 值得庆幸的是,奶牛从任意一篇草地出发,经过一系列的路径,总是可以抵达其它的任意一片 草地。 除了贪得无厌,叫兽都不知道该说什么好。

FJ竟然在每片草地上面也设置了一个过路费C_i (1 <= C_i <= 100000)。从一片草地到另外一片草地的费用,是经过的所有道路的过路 费之和,加上经过的所有的草地(包括起点和终点)的过路费的最大值。 任劳任怨的牛们希望去调查一下她们应该选择那一条路径。

她们要你写一个程序,接受K(1 <= K <= 10,000)个问题并且输出每个询问对应的最小花费。第i个问题包含两个数字s_i 和t_i(1 <= s_i <= N; 1 <= t_i <= N; s_i != t_i),表示起点和终点的草地。

分析:

这道题可以用来深入理解Floyd。首先我们开两个数组记录一下无点权和有点权时的最小花销。

考虑暴力转移时需要枚举点来找到点权最大的点,如何优化这个枚举?我们可以将点按点权从小往大排序,枚举k,i,j从1到n实质上枚举的是排序后的编号,这么做的好处是转移时点权最大的点一定在k,i,j三点之中,这样就避免了枚举点这一操作。

代码:

#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
struct A
{
int p,v;
}a[300];
bool cmp(const A &x,const A &y)
{
return x.v<y.v;
}
int f[300][300],n,m,q,g[300][300];
int main()
{
scanf("%d%d%d",&n,&m,&q);
int x,y,z;
for(int i=1;i<=n;i++)
{
a[i].p=i;
scanf("%d",&a[i].v);
}
sort(a+1,a+n+1,cmp);
memset(f,0x3f,sizeof(f));
memset(g,0x3f,sizeof(g));
for(int i=1;i<=m;i++)
{
scanf("%d%d%d",&x,&y,&z);
f[x][y]=min(f[x][y],z);
f[y][x]=f[x][y];
}
for(int k=1;k<=n;k++)
{
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
int i_=a[i].p,j_=a[j].p,k_=a[k].p;
f[i_][j_]=min(f[i_][j_],f[i_][k_]+f[k_][j_]);
g[i_][j_]=min(g[i_][j_],f[i_][j_]+max(max(a[i].v,a[j].v),a[k].v));
}
}
}
for(int i=1;i<=q;i++)
{
scanf("%d%d",&x,&y);
printf("%d\n",g[x][y]);
}
}

BZOJ_1774_[Usaco2009 Dec]Toll 过路费_floyd的更多相关文章

  1. 1774: [Usaco2009 Dec]Toll 过路费

    1774: [Usaco2009 Dec]Toll 过路费 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 263  Solved: 154[Submit ...

  2. Floyd | | jzoj[1218] | | [Usaco2009 Dec]Toll 过路费 | | BZOJ 1774 | | 我也不知道该怎么写

    写在前面:老师说这一道题是神题,事实上确实如此,主要是考察对Floyd的理解 ******************************题目.txt************************* ...

  3. [bzoj 1774][Usaco2009 Dec]Toll 过路费

    题目描述 跟所有人一样,农夫约翰以着宁教我负天下牛,休叫天下牛负我的伟大精神,日日夜夜苦思生 财之道.为了发财,他设置了一系列的规章制度,使得任何一只奶牛在农场中的道路行走,都 要向农夫约翰上交过路费 ...

  4. [Usaco2009 Dec]Toll 过路费

    题面: 跟所有人一样,农夫约翰以着宁教我负天下牛,休教天下牛负我(原文:宁我负人,休教人负我)的伟大精神,日日夜夜苦思生财之道.为了发财,他设置了一系列的规章制度,使得任何一只奶牛在农场中的道路行走, ...

  5. bzoj 1774: [Usaco2009 Dec]Toll 过路费 ——(改)floyd

    Description 跟所有人一样,农夫约翰以着宁教我负天下牛,休叫天下牛负我的伟大精神,日日夜夜苦思生 财之道.为了发财,他设置了一系列的规章制度,使得任何一只奶牛在农场中的道路行走,都 要向农夫 ...

  6. [bzoj1774] [Usaco2009 Dec]Toll 过路费

    Floyd神用法...设dis[i][j]表示i点到j点的最短路(只算边权),map[i][j]表示i到j最小费用 将n个点先按照点权排一下序...这样就可以比较方便的求出路径上最大点权了... 因为 ...

  7. 【BZOJ】1774: [Usaco2009 Dec]Toll 过路费

    [题意]给定无向图,距离定义为边权和+最大点权,询问若干个两点最短距离.n<=250. [算法]排序+floyd [题解]考虑floyd的过程是每次找一个中转点,为了在当前找到一条新路径时方便地 ...

  8. bzoj 1774: [Usaco2009 Dec]Toll 过路费【排序+Floyd】

    非常迷的一道题啊 我觉得挺对的版本只得了30 总之就是Floyd·改,开两个数组,一个是d[i][j]就是普通的只有边权的最短路,a[i][j]是题目要求的那种 具体改的地方是把枚举中转点的地方把中转 ...

  9. BZOJ3412: [Usaco2009 Dec]Music Notes乐谱

    3412: [Usaco2009 Dec]Music Notes乐谱 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 35  Solved: 30[Sub ...

随机推荐

  1. Hibernate中的对象有三种状态

    Hibernate中的对象有三种状态: 瞬时状态 (Transient),持久状态 (Persistent), 1. 脱管状态 (Detached) 1. 1. 瞬时状态 (Transient) 由  ...

  2. LOVO学习之思维导图和文档编辑器

    思维导图——是一种图示笔记方法,一种图示笔记工具,一个思考的利器.能将放射性思考具体化,帮助人们理解和记忆事物. 思维导图绘制规则:1,在纸的正中央用一个彩色图像或者符号开始画思维导图. 2,把所有主 ...

  3. Awesome Big Data List

    https://github.com/onurakpolat/awesome-bigdata A curated list of awesome big data frameworks, resour ...

  4. Visual Studio 2017 15.7 下的.NET Core

    Visual Studio 2017 15.7版本发布,对.NET Core项目的主要相关改变如下, 同时对Xamarin.Android和iOS项目的支持上也做了较大改进. 一. .NET Core ...

  5. 下载网易云VIP音乐

    有偿帮助.联系方式在个人信息里.

  6. websocket通信 实现java模拟一个client与webclient通信

    发文原由: 熟悉socket通信的同学,对于socket模拟server与client,实现相互通信, 或者使用websocket与java模拟的websocket服务器通信(比如一个聊天室),对于这 ...

  7. springAOP之代理

    AOP是指面向切面编程. 在学习AOP之前先来了解一下代理,因为传说中的AOP其实也对代理的一种应用. 首先来看这样一段代码: public interface Hello { void say(St ...

  8. mac下安装windows系统

    前言:我装win系统的原因很简单,就是某天突然想玩qq宠物了(不要嘲笑,自行尴尬一波)... 下面进入正题: 1.我的当前系统版本: 其实App Store 上新版本的os系统也已经出来很长一段时间了 ...

  9. __BEGIN_DECLS 和 __END_DECLS

    扩充C语言在编译的时候按照C++编译器进行统一处理,使得C++代码能够调用C编译生成的中间代码. 由于C语言的头文件可能被不同类型的编译器读取,因此写C语言的头文件必须慎重. 我们编写代码,经常需要c ...

  10. sniffer pro 使用方法

    一.捕获数据包前的准备工作 在默认情况下,sniffer将捕获其接入碰撞域中流经的所有数据包,但在某些场景下,有些数据包可能不是我们所需要的,为了快速定位网络问题所在,有必要对所要捕获的数据包作过滤. ...