Description

为了提高智商,ZJY去新世界旅游了。可是旅游过后的ZJY杯具的发现要打开通往原来世界的门,必须要解开门上面画的谜题。谜题是这样的:有个\(n\)行\(m\)列的棋盘,棋盘上可以放许多特殊的棋子。每个棋子的攻击范围是\(3\)行,\(p\)列。输入数据用一个\(3\times p\)的矩阵给出了棋子攻击范围的模板,棋子被默认为模板中的第\(1\)行,第\(k\)列,则棋子能攻击到的位置是\(1\),不能攻击到的位置是\(0\)。\(1\leq p\leq m,0\leq k<p\)。输入数据保证第\(1\)行第\(k\)列的位置是\(1\)。打开门的密码就是,在要求棋子互相不能攻击到的前提下,摆放棋子的方案数。注意什么棋子都不摆放也算作一种可行方案。由于方案数可能很大,而密码为\(32\)位的二进制密码,所以ZJY仅需要知道方案数对\(2^{32}\)取余数的结果即可。

Input

输入数据的第一行为两个整数\(n\)和\(m\),表示棋盘的大小。第二行为两个整数\(p\)和\(k\),表示接下来的攻击范围模板的大小,以及棋子在模板中的位置。接下来三行,每行有\(P\)个数,表示攻击范围的模版。每个数字后有一个空格。

Output

输出数据仅有一行,一个整数,表示可行的方案数模\(2^{32}\)的余数。

Range

对于\(10\%\),\(1 \leq n \leq 5,1 \leq m \leq 5\)

对于\(50\%\),\(1 \leq n \leq 1000,1 \leq m \leq 6\)

对于\(100\%\),\(1\leq n\leq 1000000,1\leq m\leq 6\)

Solution

恶心题。

被这题卡了一天。

首先注意到它的行和列是从 \(0\) 开始标号的,所以第 \(1\) 行第 \(p\) 列其实是中间一行的某一列。

预处理出所有能摆放和两行之间能转移的情况。

这里要用位运算,最开始拿数组模拟每位弄了半天还是错的,用位运算一下就出来了。

观察到转移可以用矩阵加速,于是一个矩阵快速幂敲上去就行了。

注意最后求答案矩阵的时候要新开一个数组不能直接在 \(f\) 数组上面求!

Code

#include<cstdio>
#include<cctype>
#include<cstring>
#define int unsigned long long int maxn;
int mp[5];
int n,m,p,k;
bool vis[105];
int f[70][70];
const int mod=4294967296; struct Matrix{
int a[100][100]; void clear(){
memset(a,0,sizeof a);
} void init(){
for(int i=0;i<maxn;i++)
a[i][i]=1;
} Matrix operator*(const Matrix &x)const{
Matrix z; z.clear();
for(int i=0;i<maxn;i++){
for(int j=0;j<maxn;j++){
for(int k=0;k<maxn;k++){
z.a[i][j]+=(x.a[i][k]*a[k][j])%mod;
z.a[i][j]%=mod;
}
}
}
return z;
} void print(){
for(int i=0;i<maxn;i++){
for(int j=0;j<maxn;j++)
printf("i=%lld,j=%lld,a=%lld\n",i,j,a[i][j]);
}
puts("");
for(int i=0;i<maxn;i++){
for(int j=0;j<maxn;j++)
printf("%lld",a[i][j]);
puts("");
}
}
}M; void read(int &x){
x=0; char ch=getchar();
while(!isdigit(ch)) ch=getchar();
while(isdigit(ch)) x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
} bool check(int x){
for(int i=1;i<=m;i++){
if(x&(1<<i-1)){
if(p-k+1<=i){
if((x&(mp[2]<<(i+k-p-1)))!=(1ll<<(i-1))){
//printf("x=%lld,i=%lld\n",x,i);
//printf("i-1=%lld,1<<i-1=%lld\n",i-1,1<<i-1);
//printf("i+k-p-1=%lld,mp[2]<<=%lld,x&=%lld,1<<=%lld\n",i+k-p-1,mp[2]<<i+k-p-1,x&(mp[2]<<i+k-p-1),1ll<<(i-1));
return 0;
}
}
else{
if((x&(mp[2]>>(p-k+1-i)))!=(1ll<<i-1))
return 0;
}
}
}
return 1;
} bool judge(int x,int y){
for(int i=1;i<=m;i++){
if(x&(1<<i-1)){
if(p-k+1<=i){
if((y&(mp[3]<<(i+k-p-1))))
return 0;
}
else{
if((y&(mp[3]>>(p-k+1-i))))
return 0;
}
}
if(y&(1<<i-1)){
if(p-k+1<=i){
if((x&(mp[1]<<(i+k-p-1))))
return 0;
}
else{
if((x&(mp[1]>>(p-k+1-i))))
return 0;
}
}
}
return 1;
} Matrix ksm(Matrix a,int b,int c){
Matrix ans; ans.init();
while(b){
if(b&1)
ans=ans*a;
a=a*a;
b>>=1;
}
return ans;
} void mul(int a[70][70],int b[70][70],int c[70][70])
{
int ret[70][70];
memset(ret,0,sizeof ret);
for(int i=0;i<maxn;i++)
for(int k=0;k<maxn;k++)
for(int j=0;j<maxn;j++)
{
ret[i][j]=(ret[i][j]+a[i][k]*b[k][j]%mod)%mod;
}
memcpy(c,ret,sizeof ret);
} int a[70][70];
int ans[70][70]; void qm(int y)
{
for(int i=0;i<maxn;i++)
ans[i][i]=1;
while(y)
{
if(y&1) mul(ans,a,ans);
mul(a,a,a);
y>>=1;
}
} signed main(){
read(n),read(m),read(p),read(k); k++;
maxn=1<<m;
for(int i=1;i<=3;i++){
for(int x,j=1;j<=p;j++){
read(x);
if(x)
mp[i]|=1<<p-j;
}
}
Matrix aa; aa.clear();
for(int i=0;i<maxn;i++){
if(check(i)){
vis[i]=1,f[0][i]=1;
//printf("i=%lld\n",i);
}
}
for(int i=0;i<maxn;i++){
for(int j=0;j<maxn;j++){
if(vis[i] and vis[j]){
if(judge(i,j)){
//printf("i=%lld,j=%lld\n",i,j);
aa.a[j][i]=1;
}
}
}
}
/*for(int i=0;i<maxn;i++)
a[0][i]=a[i][0]=1;*/
//aa.print();
Matrix b=ksm(aa,n-1,mod);
int c[70][70]; memset(c,0,sizeof c);
for(int i=0;i<maxn;i++){
for(int j=0;j<maxn;j++){
for(int k=0;k<maxn;k++)
(c[i][j]+=f[i][k]*b.a[k][j])%=mod;
}
}
/*qm(n-1);
mul(f,ans,ans);*/
int sum=0;
for(int i=0;i<maxn;i++){
for(int j=0;j<maxn;j++)
(sum+=c[i][j])%=mod;
}
printf("%llu\n",sum%mod);
return 0;
}

[TJOI2015] 棋盘的更多相关文章

  1. BZOJ 4000: [TJOI2015]棋盘( 状压dp + 矩阵快速幂 )

    状压dp, 然后转移都是一样的, 矩阵乘法+快速幂就行啦. O(logN*2^(3m)) ------------------------------------------------------- ...

  2. 【BZOJ4000】[TJOI2015]棋盘(矩阵快速幂,动态规划)

    [BZOJ4000][TJOI2015]棋盘(矩阵快速幂,动态规划) 题面 BZOJ 洛谷 题解 发现所有的东西都是从\(0\)开始编号的,所以状压只需要压一行就行了. 然后就可以随意矩乘了. #in ...

  3. 【刷题】BZOJ 4000 [TJOI2015]棋盘

    Description Input 输入数据的第一行为两个整数N,M表示棋盘大小.第二行为两个整数P,K, 表示攻击范围模板的大小,以及棋子在模板中的位置.接下来三行, 每行P个数,表示攻击范围的模版 ...

  4. BZOJ4000 [TJOI2015]棋盘

    首先是状态压缩DP... 然后我们发现转移都是一样的...可以矩阵优化... 于是做完啦QAQQQ 题目读不懂?恩多读几遍就读懂了,诶诶诶!别打我呀! /*********************** ...

  5. BZOJ4000 TJOI2015棋盘(状压dp+矩阵快速幂)

    显然每一行棋子的某种放法是否合法只与上一行有关,状压起来即可.然后n稍微有点大,矩阵快速幂即可. #include<iostream> #include<cstdio> #in ...

  6. [BZOJ4000][TJOI2015]棋盘(状压DP+矩阵快速幂)

    题意极其有毒,注意给的行列都是从0开始的. 状压DP,f[i][S]表示第i行状态为S的方案数,枚举上一行的状态转移.$O(n2^{2m})$ 使用矩阵加速,先构造矩阵a[S1][S2]表示上一行为S ...

  7. BZOJ4000 [TJOI2015]棋盘 【状压dp + 矩阵优化】

    题目链接 BZOJ4000 题解 注意题目中的编号均从\(0\)开始= = \(m\)特别小,考虑状压 设\(f[i][s]\)为第\(i\)行为\(s\)的方案数 每个棋子能攻击的只有本行,上一行, ...

  8. TJOI2015 day2解题报告

    TJOI2015终于写完啦~~~ T1:[TJOI2015]旅游 描述:(BZ没题面只能口述了..)一个人在一棵树上走,每次从a->b会进行一次贸易(也就是在这条路径上买入物品然后在后面卖出)然 ...

  9. [暑假的bzoj刷水记录]

    (这篇我就不信有网站来扣) 这个暑假打算刷刷题啥的 但是写博客好累啊  堆一起算了 隔一段更新一下.  7月27号之前刷的的就不写了 , 写的累 代码不贴了,可以找我要啊.. 2017.8.27upd ...

随机推荐

  1. obj-c编程01[扩展学习01]:对象消息机制工作原理

    obj-c中的类就像C语言中的struct.NSObject类声明一个成员变量isa,因为NSObject类是整个继承树的根,所以每个类中都有一个isa其指向创建的对象.在类结构中有实例变量(成员变量 ...

  2. 如何检测被锁住的Oracle存储过程

    今天遇到了这个情况,然后在网上找了到了这篇文章,借鉴过来做参考吧! 1.查看是哪一个存储过程被锁住 查V$DB_OBJECT_CACHE视图 select * from V$DB_OBJECT_CAC ...

  3. 熊猫猪新系统测试之三:iOS 8.0.2

    本来本猫要等到8.1版本出来后再做测试的,结果等来等去就是迟迟不推送更新呀!说好10月20号的iOS 8.1呢?为了一鼓作气写完,就先不等了.先拿手头的iOS 8.0.2系统做一下测试吧! 8.x系统 ...

  4. Django之跨域请求

    同源策略 首先基于安全的原因,浏览器是存在同源策略这个机制的,同源策略阻止从一个源加载的文档或脚本获取或设置另一个源加载的文档的属性. 而如果我们要跳过这个策略,也就是说非要跨域请求,那么就需要通过J ...

  5. Java IO学习--(四)网络

    Java中网络的内容或多或少的超出了Java IO的范畴.关于Java网络更多的是在我的Java网络教程中探讨.但是既然网络是一个常见的数据来源以及数据流目的地,并且因为你使用Java IO的API通 ...

  6. 十六进制颜色转换为iOS可以用的UIColor

    // //  UIColor+Transformation.h //  ContactApp // //  Created by 袁冬冬 on 15/9/11. //  Copyright (c) 2 ...

  7. python---面向对象高级进阶

    静态方法,调用静态方法后,该方法将无法访问类变量和实例变量 class Dog(object): def __init__(self,name): self.name = name def eat(s ...

  8. JS中$含义和用法

    原博客:https://www.cnblogs.com/jokerjason/p/7404649.html$在JS中本身只是一个符号而异,在JS里什么也不是.但在JS应用库JQUERY的作者将之做为一 ...

  9. SOFA 源码分析— 自定义路由寻址

    前言 SOFA-RPC 中对服务地址的选择也抽象为了一条处理链,由每一个 Router 进行处理.同 Filter 一样, SOFA-RPC 对 Router 提供了同样的扩展能力. 那么就看看 SO ...

  10. 蚂蚁 RPC 框架 SOFA-RPC 初体验

    前言 最近蚂蚁金服开源了分布式框架 SOFA,楼主写了一个 demo,体验了一下 SOFA 的功能,SOFA 完全兼容 SpringBoot(当然 Dubbo 也是可以兼容的). 项目地址:Alipa ...