中国剩余定理 CRT

正常版本CRT

要解的是一个很容易的东西
\[
\begin{aligned}
x\equiv a_1(mod\ m_1)\\
x\equiv a_2(mod\ m_2)\\
...\\
x\equiv a_n(mod\ m_n)
\end{aligned}
\]
保证\(m_1,m_2...m_n\)之间两两互质,求最小的\(x\)。

设\(M=\prod m_i\)。

首先我们确定一点,我们求出了任意一个满足条件的\(x\)之后,只需要对其模\(M\)就是最终的答案。

因为\(M\)是所有数的\(lcm\)。

考虑一下,对于每一个\(a_i\),如果我们能够求出一个数\(x_i\)

满足它是其他所有\(m\)的乘积,即\(M_i=M/m_i\)的倍数,并且\(x_i\equiv 1(mod\ m_i)\)

也就是对于任意一个\(x_i\),满足\(x_i\equiv 0(mod\ m_k),k\ne i\),\(x_i\equiv 1(mode\ m_i)\)

那么最终的答案就会是\(\sum(a_ix_i)mod\ M\)。

深思熟虑的考虑如何求出\(x_i\),

因为\(x_i\)是\(M_i\)的倍数,所以\(x_i=kM_i\equiv 1(mod\ m_i)\)

所以\(k\)是\(M_i\)在模\(m_i\)意义下的逆元。所以\(x_i\)就是\(k\)的\(M_i\)倍,注意最终统计入结果的模数是\(M\)。

所以,\(CRT\)的结果就是\(\sum (a_ik_iM_i)mod\ M\)。

不正常版本CRT

要求的东西同上,不保证所有\(m_i\)互质。

我们肯定不能像上面那样堆在一起求了。

换个方法,假设我们只有两个方程。\(x\equiv a_1(mod\ m_1),x\equiv a_2(mod\ m_2)\)

怎么算答案?

显然是要满足:\(x=x_1m_1+a_1=x_2m_2+a_2\),并且\(x\)最小。

显然是\(x_1,x_2\)都要尽可能的小。

所以\(x_1m_1+x_2m_2=a_2-a_1\)

那么\(exgcd\)可以求解最小的\(x_1\),然后就可以求得\(x=x_1m_1+a_1\)

这样子就可以同时满足这两个方程了,因为方程有多个,

所以我们把这两个方程合并,假设当前求出来的解是\(x'\)

那么我们就新加入一个方程\(x\equiv x'(mod\ lcm(m_1,m_2))\)就好了。

中国剩余定理 CRT的更多相关文章

  1. 中国剩余定理(CRT) & 扩展中国剩余定理(ExCRT)总结

    中国剩余定理(CRT) & 扩展中国剩余定理(ExCRT)总结 标签:数学方法--数论 阅读体验:https://zybuluo.com/Junlier/note/1300035 前置浅讲 前 ...

  2. 中国剩余定理(CRT)及其扩展(EXCRT)详解

    问题背景   孙子定理是中国古代求解一次同余式方程组的方法.是数论中一个重要定理.又称中国余数定理.一元线性同余方程组问题最早可见于中国南北朝时期(公元5世纪)的数学著作<孙子算经>卷下第 ...

  3. 扩展GCD 中国剩余定理(CRT) 乘法逆元模版

    extend_gcd: 已知 a,b (a>=0,b>=0) 求一组解 (x,y) 使得 (x,y)满足 gcd(a,b) = ax+by 以下代码中d = gcd(a,b).顺便求出gc ...

  4. 中国剩余定理(CRT)及其拓展(ExCRT)

    中国剩余定理 CRT 推导 给定\(n\)个同余方程 \[ \left\{ \begin{aligned} x &\equiv a_1 \pmod{m_1} \\ x &\equiv ...

  5. 学习笔记:中国剩余定理(CRT)

    引入 常想起在空间里见过的一些智力题,这个题你见过吗: 一堆苹果,\(3\)个\(3\)个地取剩\(1\)个,\(5\)个\(5\)个地取剩\(1\)个,\(7\)个\(7\)个地取剩\(2\)个,苹 ...

  6. CRT&EXCRT 中国剩余定理及其扩展

    前言: 中国剩余定理又名孙子定理.因孙子二字歧义,常以段子形式广泛流传. 中国剩余定理并不是很好理解,我也理解了很多次. CRT 中国剩余定理 中国剩余定理,就是一个解同余方程组的算法. 求满足n个条 ...

  7. 扩展中国剩余定理(扩展CRT)详解

    今天在$xsy$上翻题翻到了一道扩展CRT的题,就顺便重温了下(扩展CRT模板也在里面) 中国剩余定理是用于求一个最小的$x$,满足$x\equiv c_i \pmod{m_i}$. 正常的$CRT$ ...

  8. 欧几里得(辗转相除gcd)、扩欧(exgcd)、中国剩余定理(crt)、扩展中国剩余定理(excrt)简要介绍

    1.欧几里得算法(辗转相除法) 直接上gcd和lcm代码. int gcd(int x,int y){ ?x:gcd(y,x%y); } int lcm(int x,int y){ return x* ...

  9. 【CRT】中国剩余定理简介

    中国剩余定理(CRT) 中国剩余定理出自中国的某本古书,似乎是孙子兵法?(雾 其中有这样一个问题: 有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二.问物几何? 即,对于这样一个方程组: \[ ...

随机推荐

  1. Docker 创建 Jira Core(Jira SoftWare) 7.12.3 中文版

    目录 目录 1.介绍 1.1.什么是 JIRA Core? 1.2.什么是 JIRA SoftWare 2.JIRA 的官网在哪里? 3.如何下载安装? 4.对 JIRA 进行配置 4.1.JIRA ...

  2. SQL 百万级数据提高查询速度的方法

    ----------------[转] 1.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描.2.对查询进行优化,应尽量避免全表扫描,首先应考虑在 ...

  3. MFC映射

    所有CDC输出函数最终都会输出到物理平面(屏幕窗口.打印纸等).这些物理平面的单位量化往往多种多样,比如像素.打印点.英寸.毫米等等.这样可能会造成很多混乱,所以CDC输出对所有物理平面进行统一抽象化 ...

  4. Java之IO流进阶篇:内存流,打印流,对象流

    Java中的IO流,即为输入输出流.所谓输入输出流,都是相对于程序而言,程序就是这个参照物.一张图看懂输入输出流: 输入流抽象基类:InputStream,Reader 输出流抽象基类:OutputS ...

  5. python_库学习_02_微信自动回复机器人

    一.python发展的趋势日益庞大,微信也有对应的库itchat.这次的实例做做成可在任意电脑运行的微信自动回复机器人exe.文件. 二.完成这个小应用我们需要装一些库,, itchat:这个东东不出 ...

  6. 电脑出现问题如何修复Windows 10

    也许Windows 10无法启动.或者它可能会靴子,但会崩溃很多.在任何一种情况下,您都需要在使用PC之前解决问题.以下是修复Windows 10的几种方法. 方法1:使用Windows启动修复 如果 ...

  7. Python Docker 查看私有仓库镜像【转】

    文章来源:python Docker 查看私有仓库镜像 pip 安装: # 首先安装epel扩展源: yum -y install epel-release # 更新完成之后,就可安装pip: yum ...

  8. 3星|《给产品经理讲技术》:APP开发技术介绍,没有技术背景的话恐怕只能看懂书中的比喻和结论

    基本是APP开发涉及到的相关技术的入门级介绍.涉及到的知识点与技术细节比较多,不少技术相关的内容并没有像标题暗示的那样没有技术背景也可以看懂,而是涉及到许多专业的术语.原理.也有一些内容是用比喻的方法 ...

  9. Python开发【内置模块篇】datetime

    获取当前日期和时间 >>> from datetime import datetime >>> now = datetime.now() >>> ...

  10. bsp总结

    就版本.nand nor. led三样本周,六六六 1. bsp坏块--- => nand bad Device 0 bad blocks:047600000600000007fe0000=&g ...