题目链接:https://pintia.cn/problem-sets/994805046380707840/problems/994805069361299456

L2-006 树的遍历 (25 分)
 

给定一棵二叉树的后序遍历和中序遍历,请你输出其层序遍历的序列。这里假设键值都是互不相等的正整数。

输入格式:

输入第一行给出一个正整数N(≤30),是二叉树中结点的个数。第二行给出其后序遍历序列。第三行给出其中序遍历序列。数字间以空格分隔。

输出格式:

在一行中输出该树的层序遍历的序列。数字间以1个空格分隔,行首尾不得有多余空格。

输入样例:

7
2 3 1 5 7 6 4
1 2 3 4 5 6 7

输出样例:

4 1 6 3 5 7 2

解题思路:首先我们根据后序遍历最后一个数可确定二叉树的根,然后再从中序遍历找到该节点便能确定该根节点左右子树的节点,举个例子拿样例来说:
初始时,我们根据后序遍历知道整棵树的根节点是4,于是我们便在中序遍历找到4的位置,我们就可以确定,节点1,2,3在根节点左子树,节点3,5,7,2在根节点右子树,于是我们又采用此方法,递归在后序遍历的区间【1,3】和中序遍历的区间【1,3】建立4的左子树,在后序遍历的区间【4,6】和中序遍历的区间【5,7】建立4的右子树就可以了。
具体方法看代码:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
int n,post[],mid[];
struct node{
int l,r;
}tree[];
vector<int> ans;
int build(int l1,int r1,int l2,int r2){//l1,r1表示中序遍历的左右边间,l2,r2表示后序遍历的左右边界
if(l1>r1)return ; //递归结束条件即没有元素可以遍历
int p1,cnt,rt=post[r2]; //rt为当前子树的根节点 即为当前后序遍历的最后一个数
p1=l1; //初始p1位中序遍历的左边界
while(mid[p1]!=rt)p1++; //在中序遍历中查找根节点所在位置
cnt=p1-l1; //计算当前根节点的子节点个数
tree[rt].l=build(l1,p1-,l2,l2+cnt-); //递归构建左子树
tree[rt].r=build(p1+,r1,l2+cnt,r2-); //递归构建右子树
return rt;
}
void bfs(int rt){ //bfs搜索层序遍历
queue<int> que;
que.push(rt);
ans.push_back(rt);
while(que.size()){
int u=que.front();
que.pop();
if(tree[u].l!=){
que.push(tree[u].l);
ans.push_back(tree[u].l);
}
if(tree[u].r!=){
que.push(tree[u].r);
ans.push_back(tree[u].r);
}
}
for(int i=;i<ans.size();i++){
cout<<ans[i];
if(i!=ans.size()-)cout<<" ";
else cout<<endl;
}
}
int main(){
cin>>n;
for(int i=;i<=n;i++)cin>>post[i];
for(int i=;i<=n;i++)cin>>mid[i];
int root=build(,n,,n);
bfs(root);
return ;
}

L2-011 玩转二叉树 (25 分)

题目链接:https://pintia.cn/problem-sets/994805046380707840/problems/994805065406070784

给定一棵二叉树的中序遍历和前序遍历,请你先将树做个镜面反转,再输出反转后的层序遍历的序列。所谓镜面反转,是指将所有非叶结点的左右孩子对换。这里假设键值都是互不相等的正整数。

输入格式:

输入第一行给出一个正整数N(≤30),是二叉树中结点的个数。第二行给出其中序遍历序列。第三行给出其前序遍历序列。数字间以空格分隔。

输出格式:

在一行中输出该树反转后的层序遍历的序列。数字间以1个空格分隔,行首尾不得有多余空格。

输入样例:

7
1 2 3 4 5 6 7
4 1 3 2 6 5 7

输出样例:

4 6 1 7 5 3 2

解题思路:和上题几乎是一样的,把后序改为先序,先序遍历的第一个元素就是根节点,知道这个就可以了。镜面反转只需要改变一下bfs的搜索方式就可以了。
代码:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
int n,root,pre[],mid[];
struct node{
int l,r;
}tree[];
vector<int> ans;
int build(int l1,int r1,int l2,int r2){//l1,r1为中序遍历的左右边界,l2,r2为先序遍历的左右边界
if(l1>r1)return ;
int p,cnt,rt=pre[l2]; //先序遍历的第一个元素为当前树的树根
p=l1;
while(mid[p]!=rt)p++;
cnt=p-l1;
tree[rt].l=build(l1,p-,l2+,l2+cnt);
tree[rt].r=build(p+,r1,l2+cnt+,r2);
return rt;
}
void bfs(int rt){
queue<int> que;
que.push(rt);
ans.push_back(rt);
while(que.size()){
int u=que.front();
que.pop();
if(tree[u].r!=){
ans.push_back(tree[u].r);
que.push(tree[u].r);
}
if(tree[u].l!=){
ans.push_back(tree[u].l);
que.push(tree[u].l);
}
}
for(int i=;i<ans.size();i++){
cout<<ans[i];
if(i!=ans.size()-)cout<<" ";
else cout<<endl;
}
}
int main(){
cin>>n;
for(int i=;i<=n;i++)cin>>mid[i];
for(int i=;i<=n;i++)cin>>pre[i];
root=build(,n,,n);
bfs(root);
return ;
}

L2-006 树的遍历 (25 分) (根据后序遍历与中序遍历建二叉树)的更多相关文章

  1. PTA 7-3 树的遍历 (25分)

    PTA 7-3 树的遍历 (25分) 给定一棵二叉树的后序遍历和中序遍历,请你输出其层序遍历的序列.这里假设键值都是互不相等的正整数. 输入格式: 输入第一行给出一个正整数N(≤30),是二叉树中结点 ...

  2. PTA 03-树1 树的同构 (25分)

    题目地址 https://pta.patest.cn/pta/test/15/exam/4/question/711 5-3 树的同构   (25分) 给定两棵树T1和T2.如果T1可以通过若干次左右 ...

  3. PTA 根据后序和中序遍历输出先序遍历 (25分)

    PTA 根据后序和中序遍历输出先序遍历 (25分) 本题要求根据给定的一棵二叉树的后序遍历和中序遍历结果,输出该树的先序遍历结果. 输入格式: 第一行给出正整数N(≤30),是树中结点的个数.随后两行 ...

  4. PTA 树的同构 (25分)

    PTA 树的同构 (25分) 输入格式: 输入给出2棵二叉树树的信息.对于每棵树,首先在一行中给出一个非负整数N (≤10),即该树的结点数(此时假设结点从0到N−1编号):随后N行,第i行对应编号第 ...

  5. PAT 甲级 1040 Longest Symmetric String (25 分)(字符串最长对称字串,遍历)

    1040 Longest Symmetric String (25 分)   Given a string, you are supposed to output the length of the ...

  6. 2020天梯赛总决赛L2-3 完全二叉树的层序遍历 (25分)

    题目:一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是完美二叉树.对于深度为 D 的,有 N 个结点的二叉树,若其结点对应于相同深度完美二叉树的层序遍历的前 N 个结点,这样的树就是完全 ...

  7. PAT A1099 Build A Binary Search Tree (30 分)——二叉搜索树,中序遍历,层序遍历

    A Binary Search Tree (BST) is recursively defined as a binary tree which has the following propertie ...

  8. PAT 甲级 1020 Tree Traversals (25分)(后序中序链表建树,求层序)***重点复习

    1020 Tree Traversals (25分)   Suppose that all the keys in a binary tree are distinct positive intege ...

  9. 玩透二叉树(Binary-Tree)及前序(先序)、中序、后序【递归和非递归】遍历

    基础预热: 结点的度(Degree):结点的子树个数:树的度:树的所有结点中最大的度数:叶结点(Leaf):度为0的结点:父结点(Parent):有子树的结点是其子树的根节点的父结点:子结点/孩子结点 ...

  10. PAT 03-树1 树的同构 (25分)

    给定两棵树T1和T2.如果T1可以通过若干次左右孩子互换就变成T2,则我们称两棵树是"同构"的.例如图1给出的两棵树就是同构的,因为我们把其中一棵树的结点A.B.G的左右孩子互换后 ...

随机推荐

  1. [Web][DreamweaverCS6][高中同学毕业分布去向网站+服务器上挂载]一、安装与破解DreamweaverCS6+基本规划

    DreamweaverCS6安装与破解 一.背景介绍:同学毕业分布图项目计划简介 哎哎哎,炸么说呢,对于Web前端设计来说,纯手撕html部分代码实在是难受. 对于想做地图这类的就“必须”用这个老工具 ...

  2. Linux压缩打包tar命令总结

      命令简介   在Linux系统的维护.管理中,tar命令是一个使用频率很高的命令,tar命令的功能主要是将众多文件打包成一个tar文件并压缩,并且能保持文件的权限属性.tar其实最开始是用来做磁带 ...

  3. C# 第十版

    地址: https://files.cnblogs.com/files/blogs2014/%E9%AB%98%E7%BA%A7%E7%BC%96%E7%A8%8B%28%E7%AC%AC11%E7% ...

  4. android SDK 无法更新

    android-windows-sdk无法更新解决办法:   1.在host文件新增如下配置 (host文件位置:c:\Windows\System32\drivers\etc文件夹下面,用文本编辑器 ...

  5. 一个Web项目中实现多个数据库存储数据并相互切换用过吗?

    最近公司一个项目需要连接多个数据库(A和B)操作,根据不同的业务模块查询不同的数据库,因此需要改造下之前的spring-mybatis.xml配置文件以及jdbc.properties配置文件,项目后 ...

  6. HBase实践案例:车联网监控系统

    项目背景 本项目为车联网监控系统,系统由车载硬件设备.云服务端构成.车载硬件设备会定时采集车辆的各种状态信息,并通过移动网络上传到服务器端.服务器端接收到硬件设备发送的数据首先需要将数据进行解析,校验 ...

  7. kubernetes 集群安装etcd集群,带证书

    install etcd 准备证书 https://www.kubernetes.org.cn/3096.html 在master1需要安装CFSSL工具,这将会用来建立 TLS certificat ...

  8. CentOS 7 中使用NTP进行时间同步

    1. NTP时钟同步方式说明NTP在linux下有两种时钟同步方式,分别为直接同步和平滑同步: 直接同步 使用ntpdate命令进行同步,直接进行时间变更.如果服务器上存在一个12点运行的任务,当前服 ...

  9. js 设备判断(移动端pc端 安卓ios 微信)

    苹果安卓判断 $(function () { var u = navigator.userAgent, app = navigator.appVersion; var isAndroid = u.in ...

  10. Jenkins插件安装

    默认的Jenkins平台继有的功能是有限的,插件为Jenkins提供了各种扩展功能,有了插件,Jenkins就会变得更加强大,这里推荐两个不错的插件: 点击菜单栏中“系统管理”--“插件管理”--“A ...