L2-006 树的遍历 (25 分) (根据后序遍历与中序遍历建二叉树)
题目链接:https://pintia.cn/problem-sets/994805046380707840/problems/994805069361299456
给定一棵二叉树的后序遍历和中序遍历,请你输出其层序遍历的序列。这里假设键值都是互不相等的正整数。
输入格式:
输入第一行给出一个正整数N(≤30),是二叉树中结点的个数。第二行给出其后序遍历序列。第三行给出其中序遍历序列。数字间以空格分隔。
输出格式:
在一行中输出该树的层序遍历的序列。数字间以1个空格分隔,行首尾不得有多余空格。
输入样例:
7
2 3 1 5 7 6 4
1 2 3 4 5 6 7
输出样例:
4 1 6 3 5 7 2解题思路:首先我们根据后序遍历最后一个数可确定二叉树的根,然后再从中序遍历找到该节点便能确定该根节点左右子树的节点,举个例子拿样例来说:
初始时,我们根据后序遍历知道整棵树的根节点是4,于是我们便在中序遍历找到4的位置,我们就可以确定,节点1,2,3在根节点左子树,节点3,5,7,2在根节点右子树,于是我们又采用此方法,递归在后序遍历的区间【1,3】和中序遍历的区间【1,3】建立4的左子树,在后序遍历的区间【4,6】和中序遍历的区间【5,7】建立4的右子树就可以了。
具体方法看代码:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
int n,post[],mid[];
struct node{
int l,r;
}tree[];
vector<int> ans;
int build(int l1,int r1,int l2,int r2){//l1,r1表示中序遍历的左右边间,l2,r2表示后序遍历的左右边界
if(l1>r1)return ; //递归结束条件即没有元素可以遍历
int p1,cnt,rt=post[r2]; //rt为当前子树的根节点 即为当前后序遍历的最后一个数
p1=l1; //初始p1位中序遍历的左边界
while(mid[p1]!=rt)p1++; //在中序遍历中查找根节点所在位置
cnt=p1-l1; //计算当前根节点的子节点个数
tree[rt].l=build(l1,p1-,l2,l2+cnt-); //递归构建左子树
tree[rt].r=build(p1+,r1,l2+cnt,r2-); //递归构建右子树
return rt;
}
void bfs(int rt){ //bfs搜索层序遍历
queue<int> que;
que.push(rt);
ans.push_back(rt);
while(que.size()){
int u=que.front();
que.pop();
if(tree[u].l!=){
que.push(tree[u].l);
ans.push_back(tree[u].l);
}
if(tree[u].r!=){
que.push(tree[u].r);
ans.push_back(tree[u].r);
}
}
for(int i=;i<ans.size();i++){
cout<<ans[i];
if(i!=ans.size()-)cout<<" ";
else cout<<endl;
}
}
int main(){
cin>>n;
for(int i=;i<=n;i++)cin>>post[i];
for(int i=;i<=n;i++)cin>>mid[i];
int root=build(,n,,n);
bfs(root);
return ;
}
L2-011 玩转二叉树 (25 分)
题目链接:https://pintia.cn/problem-sets/994805046380707840/problems/994805065406070784
给定一棵二叉树的中序遍历和前序遍历,请你先将树做个镜面反转,再输出反转后的层序遍历的序列。所谓镜面反转,是指将所有非叶结点的左右孩子对换。这里假设键值都是互不相等的正整数。
输入格式:
输入第一行给出一个正整数N(≤30),是二叉树中结点的个数。第二行给出其中序遍历序列。第三行给出其前序遍历序列。数字间以空格分隔。
输出格式:
在一行中输出该树反转后的层序遍历的序列。数字间以1个空格分隔,行首尾不得有多余空格。
输入样例:
7
1 2 3 4 5 6 7
4 1 3 2 6 5 7
输出样例:
4 6 1 7 5 3 2解题思路:和上题几乎是一样的,把后序改为先序,先序遍历的第一个元素就是根节点,知道这个就可以了。镜面反转只需要改变一下bfs的搜索方式就可以了。
代码:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
int n,root,pre[],mid[];
struct node{
int l,r;
}tree[];
vector<int> ans;
int build(int l1,int r1,int l2,int r2){//l1,r1为中序遍历的左右边界,l2,r2为先序遍历的左右边界
if(l1>r1)return ;
int p,cnt,rt=pre[l2]; //先序遍历的第一个元素为当前树的树根
p=l1;
while(mid[p]!=rt)p++;
cnt=p-l1;
tree[rt].l=build(l1,p-,l2+,l2+cnt);
tree[rt].r=build(p+,r1,l2+cnt+,r2);
return rt;
}
void bfs(int rt){
queue<int> que;
que.push(rt);
ans.push_back(rt);
while(que.size()){
int u=que.front();
que.pop();
if(tree[u].r!=){
ans.push_back(tree[u].r);
que.push(tree[u].r);
}
if(tree[u].l!=){
ans.push_back(tree[u].l);
que.push(tree[u].l);
}
}
for(int i=;i<ans.size();i++){
cout<<ans[i];
if(i!=ans.size()-)cout<<" ";
else cout<<endl;
}
}
int main(){
cin>>n;
for(int i=;i<=n;i++)cin>>mid[i];
for(int i=;i<=n;i++)cin>>pre[i];
root=build(,n,,n);
bfs(root);
return ;
}
L2-006 树的遍历 (25 分) (根据后序遍历与中序遍历建二叉树)的更多相关文章
- PTA 7-3 树的遍历 (25分)
PTA 7-3 树的遍历 (25分) 给定一棵二叉树的后序遍历和中序遍历,请你输出其层序遍历的序列.这里假设键值都是互不相等的正整数. 输入格式: 输入第一行给出一个正整数N(≤30),是二叉树中结点 ...
- PTA 03-树1 树的同构 (25分)
题目地址 https://pta.patest.cn/pta/test/15/exam/4/question/711 5-3 树的同构 (25分) 给定两棵树T1和T2.如果T1可以通过若干次左右 ...
- PTA 根据后序和中序遍历输出先序遍历 (25分)
PTA 根据后序和中序遍历输出先序遍历 (25分) 本题要求根据给定的一棵二叉树的后序遍历和中序遍历结果,输出该树的先序遍历结果. 输入格式: 第一行给出正整数N(≤30),是树中结点的个数.随后两行 ...
- PTA 树的同构 (25分)
PTA 树的同构 (25分) 输入格式: 输入给出2棵二叉树树的信息.对于每棵树,首先在一行中给出一个非负整数N (≤10),即该树的结点数(此时假设结点从0到N−1编号):随后N行,第i行对应编号第 ...
- PAT 甲级 1040 Longest Symmetric String (25 分)(字符串最长对称字串,遍历)
1040 Longest Symmetric String (25 分) Given a string, you are supposed to output the length of the ...
- 2020天梯赛总决赛L2-3 完全二叉树的层序遍历 (25分)
题目:一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是完美二叉树.对于深度为 D 的,有 N 个结点的二叉树,若其结点对应于相同深度完美二叉树的层序遍历的前 N 个结点,这样的树就是完全 ...
- PAT A1099 Build A Binary Search Tree (30 分)——二叉搜索树,中序遍历,层序遍历
A Binary Search Tree (BST) is recursively defined as a binary tree which has the following propertie ...
- PAT 甲级 1020 Tree Traversals (25分)(后序中序链表建树,求层序)***重点复习
1020 Tree Traversals (25分) Suppose that all the keys in a binary tree are distinct positive intege ...
- 玩透二叉树(Binary-Tree)及前序(先序)、中序、后序【递归和非递归】遍历
基础预热: 结点的度(Degree):结点的子树个数:树的度:树的所有结点中最大的度数:叶结点(Leaf):度为0的结点:父结点(Parent):有子树的结点是其子树的根节点的父结点:子结点/孩子结点 ...
- PAT 03-树1 树的同构 (25分)
给定两棵树T1和T2.如果T1可以通过若干次左右孩子互换就变成T2,则我们称两棵树是"同构"的.例如图1给出的两棵树就是同构的,因为我们把其中一棵树的结点A.B.G的左右孩子互换后 ...
随机推荐
- 测者的性能测试手册:快速安装LoadRunner Linux上的Generator
安装和初始化 安装包 上传Linux.zip(LoadRunner Generator for Linux.zip,后台回复loadrunner获取下载地址),然后通过如下命令: unzip Linu ...
- Linux内存描述之高端内存--Linux内存管理(五)
1. 内核空间和用户空间 过去,CPU的地址总线只有32位, 32的地址总线无论是从逻辑上还是从物理上都只能描述4G的地址空间(232=4Gbit),在物理上理论上最多拥有4G内存(除了IO地址空间, ...
- 英语口语练习系列-C08-考试
<蒹葭>-诗经 蒹葭苍苍,白露为霜.所谓伊人,在水一方.溯洄从之,道阻且长.溯游从之,宛在水中央. 蒹葭萋萋,白露未晞.所谓伊人,在水之湄.溯洄从之,道阻且跻.溯游从之,宛在水中坻. 蒹葭 ...
- Jquery自动补全插件的使用
1.引入css和js <script src="js/jquery-ui.min.js"></script> <link href="cs ...
- gradle构建项目失败:Unzipping /home/.gradle/wrapper/dists/gradle-3.3-all/55gk2rcmfc6p2dg9u9ohc3hw9/gradle-3.3-all.zip to /home/.gradle/wrapper/dists/gradle-3.3-all/55gk2rcmfc6p2dg9u9ohc3hw9
Unzipping /home/.gradle/wrapper/dists/gradle-3.3-all/55gk2rcmfc6p2dg9u9ohc3hw9/gradle-3.3-all.zip to ...
- 重写override
不可重写私有方法. 不可重写非静态的方法,虽然编译器不会报错,但是得不到预期的结果. 可以通过重写的形式对父类的功能进行重新定义,比如:对功能进行修改或者进行升级时. class BaseAction ...
- Kafka简介、基本原理、执行流程与使用场景
一.简介 Apache Kafka是分布式发布-订阅消息系统,在 kafka官网上对 kafka 的定义:一个分布式发布-订阅消息传递系统. 它最初由LinkedIn公司开发,Linkedin于201 ...
- jenkins编译打包nodejs
第一步 安装nodejs插件 第二步 在全局配置管理里面添加 nodejs配置 第三步 新建任务,从git上面拉取代码 cd /opt/tomcat7/bin/workspace/confdev #进 ...
- Golang 入门系列(六)理解Go中的协程(Goroutine)
前面讲的都是一些Go 语言的基础知识,感兴趣的朋友可以先看看之前的文章.https://www.cnblogs.com/zhangweizhong/category/1275863.html. 今天就 ...
- Dubbo-Zookeeper安装
安装zookeeper: 1.拖入tar.gz包,解压 2.建立/usr/zookeeper路径,该路径创建logs文件夹和data文件夹 3.进入conf目录,复制一份zoo_sample.cfg为 ...